Классы
Предметы

Построение графика функции f(x)=x3-3x+4 с помощью производной, сопутствующие задачи

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Построение графика функции f(x)=x<sup>3</sup>-3x+4 с помощью производной, сопутствующие задачи

На этом уроке мы рассмотрим методику построения графика и исследования функции, состоящую из двух этапов. Применим эту методику для исследования функции , а также рассмотрим типовые задачи на исследование этой функции.

Введение

Методика исследования функции, построение ее графика, включает в себя 2 этапа:

1. исследование без производной;

2. исследование с помощью производной.

Построение графика и исследование функции  без производной

При исследовании функции  без производной нахождение интервалов знакопостоянства и определение знаков функции на них выполнить очень затруднительно. Однако некоторые свойства данной функции можно узнать:

1. Область определения функции – это множество всех действительных чисел.

 

2. Если x стремится к , то и данная функция стремится к . Следовательно, множество значений функции – это вся числовая ось.

             

3. График этой функции симметричен относительно точки .

Пояснение

Рассмотрим функцию

Эта функция позволяет найти интервалы знакопостоянства и построить эскиз графика (см. Рис. 1).

Эта функция нечетная:

График нечетной функции симметричен относительно точки с координатами .

Рис. 1. График функции

При прибавлении 4 к функции  график сдвинется на 4 единицы вверх по оси  (см. Рис. 2): корни  и  пропадают, а корень  сдвигается влево. Следовательно, график функции  будет симметричен относительно точки .

Рис. 2. Схематичное изображение графиков функции  и

Нам удалось установить, что функция  имеет как минимум один корень, который меньше чем .

 

Построение графика и исследование функции  с помощью производной

 

Приравниваем производную к 0 и находим критические точки:

 

 – критические точки

Выделим интервалы знакопостоянства производной, которые определяют интервалы монотонности самой функции (см. Рис. 3).

До точки  функция возрастала (производная была положительна), после этой точки функция убывает (производная отрицательная), следовательно,  – это точка максимума.

До точки  функция убывала, после этой точки функция возрастает, следовательно,  – это точка минимума.

Рис. 3. График производной функции

Найдем значения функции в точках минимума и максимума:

 

 

Можно сделать вывод, что функция возрастает от  до 6 и от 2 до ; функция убывает от 6 до 2.

На рисунке 4 показан график функции . Этот график читается следующим образом:

Если аргумент возрастает от  до , то функция возрастает от  до 6; если аргумент от  до 1, то функция убывает от 6 до 2; если аргумент возрастает от 1 до , то функция возрастает от 2 до .

Рис. 4. График функции

Результаты исследования функции

1.  при  и при

2.  при

3.  – т. max

 

 – т. min

 

3. . Наибольшего и наименьшего значения функции не существует.

Задача

Найти число корней уравнения  в зависимости от параметра .

Решение

1. Перенесем  в правую часть уравнения:

 

2. Построим график функции  (см. Рис. 5) (как построить график этой функции см. выше).

Рис. 5. Иллюстрация к задаче

3. Рассечем этот график семейством прямых , при разных . Найдем точки пересечения этих прямых с графиком функции  (см. Рис. 6).

Рис. 6. Иллюстрация к задаче

Уравнение  имеет один корень при каждом  из множества , а также из множества .

Уравнение  имеет два корня при  и при .

Уравнение имеет три корня при всех  из множества .

Ответ: 1 корень:  

2 корня: ; ;

3 корня: .

Частные случаи для задачи

1. Найти все значения параметра , при каждом из которых данное уравнение имеет ровно два различных корня.

Ответ: уравнение  имеет два корня при  и при .

2. Найти наибольшее натуральное значение параметра a, при котором уравнение имеет три различных корня.

Решение

Уравнение имеет три корня при всех  из множества . В это множество входят такие натуральные числа: 3, 4, 5. Наибольшее из них – это 5.

Ответ: .


Общий план построения графика и исследования функции  

Общий план состоит из двух этапов:

1. Этап А: исследование без производной.

2. Этап Б: исследование с производной.

Этап А

1. Найти область определения функции .

2. Выделить интервалы знакопостоянства функции и определить знаки функции на них (для этого нужно приблизительно оценить расположение корней или точно найти их).

3. Найти точку пересечения графика с осью , для этого приравнять  и вычислить .

4. Выяснить специфику функции:

- четность, нечетность, периодичность;

- наличие центра или оси симметрии.

5. Построить эскиз графика в окрестностях каждого корня (в окрестностях корня функция может возрастать, убывать, иметь точку максимума или минимума (см. Рис. 7)).

Рис. 7. Эскиз графиков в окрестностях корня

6. Построить эскиз графика функции в окрестностях точек разрыва области определения . Точки разрыва – это, как правило, корни знаменателя. Они могут определять вертикальные асимптоты.

7. Построить график функции в окрестностях бесконечно удаленных точек: .

Этап Б

1. Найти производную функции .

2. Найти интервалы знакопостоянства производной и определить знаки производной на них. Эти интервалы определяют интервалы монотонности самой функции.

3. Найти критические точки, исследовать их на экстремум.

4. Построить и описать график функции .

Предложенная схема работает особенно хорошо для функций вида: , где  и  – многочлены.

 

Список литературы

1. Мордкович А.Г., Семенов П. В. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2009.

2. Мордкович А.Г. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2009.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики). – М.: Просвещение, 1996.

4. Колягин Ю.М., Сидоров Ю.В., Ткачева М.В., Федорова М.В., Шабунин М.И. Алгебра и начала математического анализа, 10 класс. Учебник для учащихся общеобразовательных учреждений (профильный уровень). – М.: Мнемозина, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт «ЯКласс» (Источник)

2. Интернет-сайт «Вся элементарная математика» (Источник)

3. Интернет-сайт YouTube (Источник)

 

Домашнее задание

1. Задание 45.13, 45.15(а), 45.3 (б) (стр. 265) – Мордкович А.Г. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 2. Задачник (Источник)

2. Исследуйте функцию и постройте ее график .