Классы
Предметы

Арктангенс и решение уравнения tg x=a (продолжение)

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Арктангенс и решение уравнения tg x=a (продолжение)

На этом уроке мы продолжим изучение арктангенса и решение уравнений вида tg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение tgx = aв общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы ответа. В конце урока решим несколько задач с иллюстрацией решений на графике и на круге.

Тема: Тригонометрические уравнения

Урок: Арктангенс и решение уравнения tgx=a (продолжение)

1. Тема урока, введение

На этом уроке мы рассмотрим решение уравнения  для любого действительного  

2. Решение уравнения tgx=√3

Задача 1. Решить уравнение

Решение:

Найдем решение с помощью графиков функций (рис. 1).

Рассмотрим промежуток   На этом промежутке функция монотонна, значит,  достигается только при одном значении функции.

Ответ:

Решим это же уравнение с помощью числовой окружности (рис. 2).

Ответ:

3. Решение уравнения tgx=a в общем виде

Решим уравнение  в общем виде (рис. 3).

На промежутке  уравнение  имеет единственное решение

Наименьший положительный период  

Ответ:

Проиллюстрируем на числовой окружности (рис. 4).

Ответ:

4. Решение задач

Задача 2. Решить уравнение

Решение:

Произведем замену переменной

Ответ:

Задача 3. Решить систему:

Решение (рис. 5):

В точке  значение  поэтому решением системы является только точка  

Ответ:

Задача 4. Решить уравнение

Решение:

Решим методом замены переменной:

Ответ:

Задача 5. Найти число решений уравнения  на промежутке

Решение:

Решим задачу с помощью графика (рис. 6).

Уравнение имеет три решения на заданном промежутке.

Проиллюстрируем на числовой окружности (рис. 7), хотя это не так наглядно, как на графике.

Ответ: Три решения.

5. Вывод, заключение

Мы решали уравнение  для любого действительного  используя понятие арктангенс. На следующем уроке мы познакомимся с понятием арккотангенс.

 

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

 

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

№№ 22.18, 22.21.

 

Дополнительные веб-ресурсы

1. Математика (Источник).

2. Интернет-портал Problems.ru (Источник).

3. Образовательный портал для подготовки к экзаменам (Источник).