Классы
Предметы

Решение логарифмических уравнений (продолжение)

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Решение логарифмических уравнений (продолжение)

На данном уроке мы продолжим решать разнообразные типовые логарифмические уравнения, рассмотрим уравнения повышенной сложности.

1. Важные опорные факты

Ключом к решению логарифмических уравнений являются свойства логарифмической функции, т. е. функции вида  (). Здесь t – независимая переменная, а= конкретное число, у – зависимая переменная, функция.

Вспомним основные свойства логарифмической функции.

Рис. 1. График логарифмической функции при различных основаниях

Функция монотонна на всей своей области определения. При  монотонно возрастает (когда аргумент возрастает от нуля до плюс бесконечности, функция возрастает от минус до плюс бесконечности). При  монотонно убывает (когда аргумент возрастает от нуля до плюс бесконечности, функция убывает от плюс до минус бесконечности). Именно монотонность функции позволяет решать простейшие логарифмические уравнения (т. к. из равенства логарифмов по одному основанию вытекает равенство подлогарифмических выражений ), все остальные логарифмические уравнение сводятся к простейшим:

ОДЗ заданного уравнения определяется системой. Под логарифмом может стоять только положительное число, имеем:

Мы выяснили, что функции f и g равны, поэтому достаточно выбрать одно любое неравенство, чтобы соблюсти ОДЗ.

Имеем смешанную систему. Неравенство, как правило, решать необязательно, достаточно решить уравнение и найденные корни подставить в неравенство, таким образом выполнить проверку.

Напомним методику решения простейших логарифмических уравнений:

Уравнять основания логарифмов;

Приравнять подлогарифмические функции;

Выполнить проверку.

2. Решение примера

Перейдем к решению примеров.

Пример 1 – решить уравнение:

Отметим ОДЗ: (т. к. х стоит под логарифмом и в основании логарифма)

Нам известно следующее свойство логарифма:

Получаем:

Приведем подобные:

Сократим численный множитель

Преобразуем согласно определению логарифма:

Пример 2 – решить показательное уравнение:

Способ 1 (по определению логарифма):

Способ 2 (прологарифмировать обе части):

Рекомендация – если неизвестное находится в показателе, то часто применяется такой способ решения. Но нужно обратить внимание на вопрос – можно ли в данном случае логарифмировать? В заданном примере и левая, и правая части строго положительны, поэтому имеем право записать:

Вынесем показатель степени как сомножитель согласно свойству логарифма:

Упростим:

3. Решение показательного уравнения

Способ 3 (уравнять основания в показательном уравнении):

Воспользуемся основным логарифмическим тождеством:

4. Решение показательно-степенного уравнения

Пример 3 – решить показательно-степенное уравнение:

Укажем ОДЗ:

Теперь имеем право прологарифмировать обе части. Выбираем основание логарифма 2, т. к. такое основание уже представлено в уравнении:

Вынесем показатели степени как сомножители:

Упростим правую часть:

Введем замену переменых:

Получаем:

Раскроем скобки и перенесем все члены в одну сторону:

Получили квадратное уравнение, согласно теореме Виета, имеем корни:

Вернемся к исходным переменным:

Ответ:  или

Пример 4 – решить уравнение:

ОДЗ:

5. Применение модуля при решении сложных уравнений

Вынесем показатель степени как сомножитель, при этом используем модуль, чтобы не исказить область определения:

Раскроем модуль, учитывая ОДЗ:

Приведем подобные:

Ответ:

Итак, мы рассмотрели решение более сложных типовых логарифмических уравнений. Далее перейдем к изучению логарифмических неравенств.

 

Список литературы

  1. Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
  2. Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
  3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Reshit.ru (Источник).
  2. Egesdam.ru (Источник).
  3. Math.md (Источник).

 

Домашнее задание

1. Алгебра и начала анализа, 10–11 класс (А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын) 1990, № 518–520;

2. Решить уравнение:

3. Решить уравнение: