Классы
Предметы

Практика. Линейные уравнения и их системы

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Практика. Линейные уравнения и их системы

На этом уроке мы потренируемся решать линейные уравнения, системы, а также различные текстовые задачи, которые к ним сводятся.

Решение линейных уравнений

Пример . Решить уравнение: .

Решение

Вспомним, что деление, по определению, операция, обратная умножению (деление на какое-либо число – это то же самое, что и умножение на обратное к этому числу):

Разделим обе части уравнения на  или умножим на :

Упростим выражение в левой части уравнения:

Упростим выражение в правой части уравнения:

Таким образом, решением уравнения будет:

Ответ: .

 

Пример . Решить уравнение: .

Решение

Перенесем все слагаемые с переменной в левую часть уравнения, а без переменной – в правую: .

Упростим уравнение – выполним действия в обеих частях уравнения: .

Разделим обе части уравнения на :

Решением уравнения является .

Ответ: .

 

Пример . Решить уравнение: .

Решение

Раскроем скобки в правой и левой частях уравнения. Для выражения в левой части уравнения используем распределительный закон: .

Тогда . Вспомним, что если перед скобками стоит знак минус, то при раскрытии скобок все знаки всех слагаемых внутри скобок меняются на противоположный: .

Перепишем уравнение после применения преобразований: .

Как и в предыдущем примере, перенесем все слагаемые с переменной в левую часть уравнения, а без переменной – в правую: .

Выполнив действия в обеих частях уравнения, получим тождество: .

Таким образом, данное равенство верно всегда, при любых значениях переменной.

Ответ:  – любое число.

 

Пример . Решить уравнение: .

Решение

Раскроем скобки в правой и левой частях уравнения, используя распределительный закон .

Перенесем все слагаемые с переменной в левую часть уравнения, а без переменной – в правую: .

Получаем .

Данное равенство неверно всегда, т.е. оно не выполняется ни при каких значениях переменной.

Ответ: нет решений.

 

Пример . Решить уравнение: .

Решение

Избавимся от знаменателей дробей – умножим обе части уравнения на общий знаменатель всех дробей, т.е. число :

Получим: .

Выполним сокращения и избавимся от знаменателей: .

Раскроем скобки:

Перенесем все слагаемые с переменной в левую часть уравнения, а без переменной – в правую: .

Выполнив действия в обеих частях уравнения, получим следующее уравнение: .

Найдем :

Ответ: .

Системы линейных уравнений

В общем виде системы линейных уравнений выглядят следующим образом:  где  – переменные, – произвольные числа.

Есть несколько методов решения систем уравнений.

  1. Метод подстановки.
  2. Метод сложения.
  3. Графический метод.

Решение систем линейных уравнений

Пример . Решить систему: .

Решение (несколько способов)

1. Метод подстановки – необходимо в уравнении выразить одну переменную через другую и подставить во второе уравнение.

Из первого уравнения выразим , для этого перенесем  из левой части уравнения в правую: .

Затем умножим обе части первого уравнения на : .

Теперь подставим во второе уравнение полученное выражение: .

Теперь во втором уравнении только одна переменная , решим его (мы уже умеем это делать – получилось обычное линейное уравнение с одной переменной).

Раскроем скобки во втором уравнении: .

Во втором уравнении перенесем все слагаемые с переменной в левую часть, а без переменной – в правую: .

Выполним действия в обеих частях второго уравнения: .

Найдем : .

Подставим в первое уравнение найденное значение переменной:

Решением системы будет: .

Ответ: .

 

2. Метод сложения – нужно преобразовать уравнения так, чтобы при одной переменной в разных уравнениях были противоположные коэффициенты, после этого нужно сложить правые и левые части уравнений.

Избавимся от переменной . Умножим первое уравнение на : .

Теперь система имеет вид: .

Сложим уравнения системы: .

Получим следующее уравнение: . Выполним действия: .

Найдем :

Подставим найденное значение в любое из уравнений исходной системы, например, в первое: .

Выразим : . Решением системы будет: .

Ответ: .

 

3. Графический метод

 

Сначала перепишем каждое из уравнений так, чтобы они задавали линейную функцию в привычном для нас виде , т.е. выразим  через :

Графиком линейной функции является прямая. Построим обе прямые по двум точкам. Вместо  возьмем произвольные значения и подставим их в соответствующие уравнения прямых:

Отметим точки на координатной плоскости и проведем через них прямые (Рис. 1).

Рис. 1. Иллюстрация к примеру 6

Видно, что точкой пересечения прямых является точка с координатами . Поскольку точка лежит на каждой из прямых, а прямая – это множество решений уравнения, то точка пересечения прямых является решением каждого из уравнений, т.е. является решением системы. Координаты точки пересечения и будут решением системы.

Дополнительно нужно подставить координаты точки в исходную систему, чтобы убедиться в правильности: .

Ответ: .

 

Пример . Решить систему: .

Решение

Сначала упростим уравнения системы – избавимся от знаменателей дробей. Для этого умножим каждое уравнение на общий знаменатель дробей, которые в него входят (чтобы найти это число, нужно рассмотреть наименьшее общее кратное чисел, которые стоят в знаменателе):

Получим:

Выполним сокращения и избавимся от знаменателей:

Раскроем скобки:

Приведем подобные слагаемые:

Умножим второе уравнение на :

Сложим уравнения системы:

Получим уравнение:

Выполним действия:

Найдем :

Подставим в первое уравнение найденное значение переменной:

Решением системы будет: .

Ответ: .

Задачи, решение которых сводятся к линейным уравнениям и их системам

Задача

Провод длиной  метров разрезали на  части (Рис. 2), причем первая часть в  раза длиннее третьей, а вторая – на  метров длиннее третьей. Найти длину каждой части провода.

Рис. 2. Иллюстрация к задаче 1

Решение

1. Провод длиной  метров разрезали на  части:

Первая часть в  раза длиннее третьей:

Вторая часть на  метров длиннее третьей:

Теперь все выражено через часть , поэтому все замены можно переписать так:

2. Обозначим длину части  за :

Перенесем все слагаемые с переменной в левую часть уравнения, а без переменной – в правую:

Выполним действия:

Найдем  – длину части :

3. Найдем длину части :

 м

Часть :

 м

Ответ:  метров;  метров;  метров.

 

Задача

Из села в город легковой автомобиль доехал за  ч, а грузовой – за  ч (Рис. 3). Найти скорость движения каждого автомобиля, если скорость грузового автомобиля на  км/ч меньше скорости легкового.

Рис. 3. Иллюстрация к задаче 2

Решение

Введем обозначения:

  1. Легковой автомобиль:  – его скорость,  – время,  – путь, который он проходит.
  2. Грузовой автомобиль:  –скорость,  – время,  – путь, который он проходит.

Перепишем условие задачи в новых обозначениях:

 – автомобили проехали одно и то же расстояние

Воспользуемся следующей формулой: . Тогда:

Так как , то . Используем оставшееся условие  и получим следующую систему: .

Такую систему будем решать методом подстановки – подставим первое уравнение во второе: .

Раскроем скобки: .

Перенесем все слагаемые с переменной в одну часть уравнения, а без переменной – в другую: .

Найдем :

Таким образом, скорость легкового автомобиля:  км/ч.

Найдем скорость грузового автомобиля: подставим найденное значение  в уравнение :

 км/ч

Ответ:  км/ч;  км/ч.

 

Задача

Токарь планировал изготавливать ежедневно по  детали, чтобы выполнить задание вовремя. Но он изготавливал ежедневно на  деталей больше (Рис. 4) и уже за  дней до окончания срока работы сделал  деталь сверх плана. За сколько дней токарь планировал выполнить задание?

Рис. 4. Иллюстрация к задаче 3

Решение

Введем обозначения:

  1. Токарь планировал: сделать работу  со скоростью  за время .
  2. Получилось: сделал работу  со скоростью  за время .

Перепишем условие задачи в новых обозначениях:

деталь/день

деталь/день

Воспользуемся формулой:

Тогда:

Если , то .

Подставим  в предыдущее уравнение: .

Раскроем скобки: .

Перенесем все слагаемые с переменной в левую часть уравнения, а без переменной – в правую: .

Выполним действия: .

Найдем :

Ответ:  дней.

Задачи. Системы линейных уравнений

Задача

Лодка за  ч движения по течению реки и  ч против течения проходит  км (Рис. 5). Найти скорость лодки по течению и ее скорость против течения, если за  ч движения против течения она проходит такой же путь, как и за  ч по течению.

Рис. 5. Иллюстрация к задаче 4

Решение

Введем обозначения:

  1. Скорость лодки по течению: .
  2. Скорость лодки против течения: .

Воспользуется формулой: .

Лодка за  ч движения по течению реки и  ч против течения проходит  км, тогда .

За  ч движения против течения она проходит такой же путь, как и за  ч по течению: .

Запишем полученную систему линейных уравнений: .

Воспользуется методом подстановки. Во втором уравнении выразим  через  – разделим обе части уравнения на : .

Подставим полученное значение  в первое уравнение: .

Выполним действие: .

Найдем : .

Найдем : .

Ответ:  км/ч;  км/ч.

 

Задача

В двух ящиках лежат яблоки. Если из первого ящика переложить во второй  яблок, то в обоих ящиках их станет поровну (Рис. 6). Если же из второго ящика переложить в первый  яблок, то в первом станет в  раза больше яблок, чем во втором (Рис. 7). Сколько яблок лежит в каждом ящике?

Рис. 6. Иллюстрация к задаче 5

Рис. 7. Иллюстрация к задаче 5

Решение

Пусть изначально в первом ящике было  яблок, а во втором –  яблок. Если из первого ящика переложить во второй  яблок, то в обоих ящиках их станет поровну:

Если же из второго ящика переложить в первый  яблок, то в первом станет в  раза больше яблок, чем во втором: . Запишем полученную систему линейных уравнений: .

Раскроем скобки во втором уравнении: .

В обоих уравнениях выразим  через : .

Воспользуемся методом подстановки – подставим выражение во второе уравнение: .

Во втором уравнении перенесем все слагаемые с переменной в левую часть, а без переменной – в правую: .

Найдем  – количество яблок во втором ящике: . Подставим найденное значение в первое уравнение и найдем  – количество яблок в первом ящике:

Ответ: .

 

 

Задача

Один металлический сплав содержит  меди, другой –  меди (Рис. 8). Сколько килограммов каждого сплава надо взять, чтобы получить  кг сплава, содержащего  меди (Рис. 9)?

Рис. 8. Иллюстрация к задаче 6

Рис. 9. Иллюстрация к задаче 6

Решение

Пусть необходимо взять  кг первого сплава и  кг второго сплава. Тогда .

Теперь посчитаем массу меди, она составляет: .

Мы знаем, что  – это  от чего-то (Рис. 10), значит,  - это , т.е.  от  – это .Аналогично  от  – это , а  от  – это .

Рис. 10. Иллюстрация к задаче 6

 

Запишем уравнение: . Запишем полученную систему линейных уравнений: .

В первом уравнении выразим  через : .

Воспользуемся методом подстановки – подставим первое уравнение во второе: .

Раскроем скобки во втором уравнении: .

Во втором уравнении оставим слагаемые с переменной в левой части уравнения, а без переменной перенесем в правую: .

Выполним действия: . Найдем  – количество кг второго сплава, которое необходимо взять: .

Найдем  – количество кг первого сплава: .

Ответ:  кг;  кг.

 

Задача

Сумма цифр двузначного числа равна . Если поменять местами его цифры, то получим число, которое больше данного на . Найти данное число.

Решение

Обозначим двузначное число так: . Сумма цифр двузначного числа  равна : .

Если поменять местами его цифры, то получим следующее число: . Так как в числе   десятков и  единиц, то , а в числе   десятков и  единиц, значит, .

Число  на  больше, чем , поэтому .

Перенесем все слагаемые с переменной в левую часть, а без переменной – в правую:

Запишем полученную систему линейных уравнений: .

В первом уравнении выразим  через : .

Воспользуемся методом подстановки – подставим это выражение во второе уравнение: .

Во втором уравнении раскроем скобки: .

Перенесем все слагаемые с переменной в левую часть, а без переменной – в правую и выполним действия: .

Найдем  – число единиц в числе :

Найдем  – число десятков в числе :

Таким образом, исходным числом является .

Ответ: .

 

Заключение

На этом уроке мы потренировались решать различные уравнения и системы линейных уравнений, а также задачи, которые к ним сводятся.

 

Список рекомендованной литературы

  1. Никольский С.М., Решетников Н.Н., Потапов М.К., Шевкин А.В. Алгебра. 7 класс. Учебник. ФГОС, изд-во «Просвещение», 2017.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. Алгебра. 7 класс. Учебник, изд-во «Просвещение», 2014.
  3. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра. 7 класс. Учебник, изд-во «Просвещение», 2013.

 

Рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «school-assistant.ru» (Источник)
  2. Интернет-портал «yaklass.ru» (Источник)
  3. Интернет-портал «yaklass.ru» (Источник)

 

Домашнее задание

  1. Решите уравнение: .
  2. Решите графически систему уравнений: .
  3. Три утенка и четыре гусенка весят  г, а четыре утенка и три гусенка весят  г. Сколько весит один гусенок?