Классы
Предметы

Умножение многочлена на одночлен. Типовые задачи

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Умножение многочлена на одночлен. Типовые задачи

На данном уроке будет изучена операция умножения многочлена на одночлен, являющаяся основой для изучения умножения многочленов. Вспомним распределительный закон умножения и сформулируем правило умножения любого многочлена на одночлен. Также вспомним некоторые свойства степеней. Кроме того, будут сформулированы типовые ошибки при выполнении различных примеров.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»

Тема: Многочлены. Арифметические операции над одночленами

Урок: Умножение многочлена на одночлен. Типовые задачи

1. Теоретические основы для выполнения умножения многочлена на одночлен - формулировка

Операция умножения многочлена на одночлен является основой для рассмотрения операции умножения многочлена на многочлен и нужно сначала научиться умножать многочлен на одночлен, чтобы разобраться в умножении многочленов.

Основой данной операции является распределительный закон умножения. Напомним его:

;

По существу, мы видим правило умножения многочлена, в данном случае двучлена, на одночлен и это правило можно сформулировать так: чтобы умножить многочлен на одночлен, нужно каждый член многочлена умножить на этот одночлен. Сложить алгебраически полученные произведения, после чего произвести над многочленом необходимые действия – а именно привести его к стандартному виду.

2. Правило умножения многочлена на одночлен, решение примеров

Рассмотрим пример:

Комментарий: данный пример решается, точно следуя правилу: каждый член многочлена умножается на одночлен. Для того, чтобы хорошо понять и усвоить распределительный закон, в данном примере члены многочлена были заменены на х и у соответственно, а одночлен на с, после этого выполнено элементарное действие в соответствии с распределительным законом и выполнена подстановка исходных значений. Следует быть внимательными со знаками и правильно выполнить умножение на минус единицу.

Рассмотрим пример умножения трехчлена на одночлен и убедимся, что оно ничем не отличается от такой же операции с двучленом:

Перейдем к решению примеров:

Пример 1:

Комментарий: данный пример решается согласно распределительному закону и аналогично предыдущему примеру - каждый член многочлена умножается на одночлен, полученный многочлен уже записан в стандартном виде, поэтому упростить его нельзя.

Пример 2 – выполнить действия и получить многочлен в стандартном виде:

;

Комментарий: для решения данного примера сначала произведем умножение для первого и второго двучленов согласно распределительному закону, после этого приведем полученный многочлен к стандартному виду - приведем подобные члены.

Теперь сформулируем основные задачи, связанные с операцией умножения многочлена на одночлен, и приведем примеры их решения.

3. Решение первой типовой задачи – на упрощение выражений

Задача1 – упростить выражение:

;

Комментарий: данный пример решается аналогично предыдущему, а именно вначале производится умножение многочленов на соответствующие одночлены, после этого приведение подобных.

4. Решение второй типовой задачи – вычислительной

Задача 2 – упростить и вычислить:

Пример 1:;

;

;

Комментарий: данный пример решается аналогично предыдущему, с тем лишь дополнением, что после приведения подобных членов нужно вместо переменной подставить ее конкретное значение и вычислить значение многочлена. Напомним, чтобы легко умножить десятичную дробь на десять, нужно переместить запятую на один разряд вправо.

Пример 2:

Найти значение многочлена при

;

5. Решение третьей типовой задачи – уравнение

Задача 3 – решить уравнение:

Пример 1: ;

;

;

.

Комментарий: для решения данного уравнения упростим левую его часть: произведем умножение многочленов на соответствующие им одночлены, а свободный член перенесем в правую часть. После приведения подобных остается решить элементарное уравнение.

Пример 2:

;

;

;

Комментарий: данный пример решается аналогично предыдущему.

6. Формулировка типичных ошибок

Хотелось бы обратить внимание на типовые ошибки во избежание таковых в дальнейшем:

 – неверно! так как ;

 – неверно! так как ;

Вывод: в данном уроке была изучена операция умножения многочлена на одночлен и рассмотрены различные примеры. Кроме того, были сформулированы и решены основные типовые задачи, касающиеся данной операции.

 

Список рекомендованной литературы

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ 

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

 

Рекомендованные ссылки на ресурсы интернет

1. Школьный помощник (Источник).

2. Старая школа (Источник).

3. Интернет-портал FizMat.by (Источник).

 

Рекомендованное домашнее задание

Задание 1: Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7, №695 , ст.184;

Задание 2: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, №359, ст.76;

Задание 3: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, №362, ст.76;