Классы
Предметы

Функция y = √x. Её свойства и график. Решение задач

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Функция y = √x. Её свойства и график. Решение задач

На сегодняшнем уроке мы повторим определение квадратного корня, свойства функции y = √x и ее график, а затем рассмотрим несколько задач, при решении которых будет использоваться построение графика данной функции.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Функции»

Повторение понятия квадратного корня и графика функции y = √x

Данный урок мы посвятим решению типовых задач на построение графика функции . Вспомним определение квадратного корня.

Определение. Квадратным корнем из неотрицательного числа  называется такое неотрицательное число , квадрат которого равен .

.

Изобразим график  – это правая ветвь параболы (рис. 1).

Рис. 1.

На графике наглядно виден смысл вычисления квадратного корня. Например, если рассмотреть ординату 16, то ей будет соответствовать абсцисса 4, т. к. . Аналогично, ординате 9 на графике соответствует точка с абсциссой 3, поскольку , ординате 11 соответствует абсцисса , т. к.  (квадратный корень из 11 не извлекается в целых числах).

Теперь вспомним график функции  (рис. 2).

Рис. 2.

На графике для наглядности изображены несколько точек, ординаты которых вычисляются с помощью извлечения квадратного корня: , , .

Примеры на преобразование графиков с корнями

Пример 1. Постройте и прочтите график функции: а) , б) .

Решение. а) Построение начинается с простейшего вида функции, т. е. в данном случае с графика  (пунктиром). Затем для построения искомого графика график функции  необходимо сдвинуть влево на 1 (рис. 3). При этом все точки графика сдвинутся на 1 влево, например, точка с координатами (1;1) перейдет в точку с координатами (0;1). В результате получаем искомый график (красная кривая). Проверить такой способ легко при подстановке нескольких значений аргумента.

Рис. 3.

Прочтем график: если аргумент меняется от  до , функция возрастает от 0 до . Область определения (ОДЗ) при этом требует, чтобы подкоренное выражение было неотрицательным, т. е. .

б)  Для построения графика функции  поступим аналогичным образом. Сначала строим график  (пунктиром). Затем для построения искомого графика график функции  необходимо сдвинуть вправо на 1 (рис. 4). При этом все точки графика сдвинутся на 1 вправо, например, точка с координатами (1;1) прейдет в точку с координатами (2;1). В результате получаем искомый график (красная кривая).

Рис. 4.

Прочтем график: если аргумент меняется от  до , функция возрастает от 0 до . Область определения (ОДЗ) аналогична предыдущему случаю: .

Замечание. На указанных примерах несложно сформулировать правило построения функций вида:

.

Пример 2. Постройте и прочтите график функции: а) , б) .

Решение. а) Этот пример также демонстрирует преобразование графиков функций, но только уже другого типа. Начинаем построение с простейшей функции  (пунктиром). Затем график построенной функции смещаем на 2 вверх и получаем на рисунке 5 искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;3).

Рис. 5.

Прочтем график: если аргумент меняется от 0 до , функция возрастает от 2 до . Область определения (ОДЗ): .

б) Также начинаем построение с простейшей функции  (пунктиром). Затем график построенной функции (рис. 6) смещаем на 1 вниз и получаем искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;0).

Рис. 6.

Прочтем график: если аргумент меняется от 0 до , функция возрастает от  до . Область определения (ОДЗ): .

Замечание. С помощью указанных примеров сформулируем правило построения функций вида:

.

Пример 3. Постройте и прочтите график функции .

Решение. Метод построения указанной функции представляет собой комбинацию двух методов, которые мы видели в предыдущих примерах. Сначала строим основную функцию  (пунктиром), затем смещаем ее на 1 вправо и на 2 вверх (рис. 7). При этом, например, точка с координатами (1;1) сначала перейдет в точку (2;1), а затем в точку (2;3). Искомая кривая изображена красным цветом.

Рис. 7.

Прочтем график: если аргумент меняется от  до , функция возрастает от 2 до . Область определения (ОДЗ) – подкоренное выражение неотрицательно: .

Замечание. Как видно на указанном примере, преобразования графиков функций, которые мы рассмотрели, можно применять последовательно в комплексе.

Пример 4. Постройте и прочтите график функции .

Решение. Для построения данной составной функции изображаем ее части в приведенных диапазонах построения (рис. 8). Для этого сначала изображаем пунктиром всю функцию , затем всю функцию , а затем наводим (красная кривая) только те их области, которые заданы условием задачи. Сливаются два участка кривой в точке с координатами (1;1).

Рис. 8.

Прочтем график: если аргумент меняется от  до 1, функция возрастает от 0 до , если аргумент меняется от 1 до , функция убывает от 1 до 0. Область определения (ОДЗ) – подкоренное выражение неотрицательно: .

Пример на решение системы уравнений с квадратным корнем

Пример 5. Графически решить систему уравнений .

Решение. Для решения системы графическим способом необходимо построить графики функций (рис. 9), представляющих собой уравнения системы, и определить координаты их точек пересечения.

Рис. 9.

На графике изображен полезный факт, демонстрирующий, что графики квадратичной функции и квадратного корня симметричны относительно графика функции  . По графику видно, что имеем две точки пересечения, т. е. система имеет два решения. Для определения точных значений этих решений подставим стандартные значения аргумента в обе исследуемые функции: 0 и 1. При этом получим:  и , т. е. координаты точек пересечения графиков и решения системы:  и .

Ответ. (0;0), (1;1).

Пример на решения уравнения с параметром

Пример 6. (С параметром). При каких значениях параметра  имеет решение уравнение ?

Решение. Для исследования значений параметра  воспользуемся графическим методом и построим график функции . Мы его уже строили на сегодняшнем уроке, поэтому воспользуемся готовым рисунком 10.

Рис. 10.

Прочтем график: если аргумент меняется от  до , функция возрастает от 2 до . Из этого следует, что функция принимает значения только , причем при аргументе  она принимает свое минимальное значение . Из полученного диапазона изменения  можно сделать однозначный вывод, что параметр , который в уравнении приравнивается к рассмотренной функции, может принимать такие же значения . Например, при  имеем, что , т. е. у уравнения есть корень и т. д.

Ответ..

На следующем уроке мы рассмотрим свойства квадратных корней.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Математика = это легко! ;) (Источник).

2. Фестиваль педагогических идей «Открытый урок» (Источник).

3. Квадратный корень из х (Источник).

 

Домашнее задание

1. №313, 316, 317. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Решите графически уравнение .

3. Постройте график функции .

4. Решите графически уравнение: