Классы
Предметы

Алгебраические дроби

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Алгебраические дроби

Этот урок является одним из итоговых по знаниям алгебры 8-ого класса. Мы с вами вспомним основные определения и примеры решения задач на тему «Алгебраические дроби».

Тема: Повторение курса алгебры 8-ого класса

Урок: Алгебраические дроби

1. Определение алгебраической дроби

Для начала давайте вспомним, что же такое алгебраические дроби. Алгебраической дробью называют выражение вида  , где  – многочлены,  – числитель,  – знаменатель.

Поскольку  – многочлены, то необходимо иметь в виду стандартные действия, возможные с многочленами, а именно: приведение к стандартному виду, разложение на множители, а также сокращение числителя и знаменателя.

2. Решение примеров

Пример №1

Сократите дробь

 – воспользуемся формулами сокращённого умножения для квадрата суммы и разности квадратов.

Комментарии: вначале мы разложили дробь на множители с помощью формул сокращённого умножения, а дальше воспользовались одним из основных свойств дроби: и числитель, и знаменатель алгебраической дроби можно умножить или разделить на один и тот же многочлен, в том числе число, который не равен 0. Таким образом получается, что мы и числитель, и знаменатель разделили на многочлен , поэтому обязательно необходимо учесть, что этот многочлен не равен 0, т. е. .

Пример №2

Из условия нам пока не ясно, какая связь между этими двумя функциями. Для этого нам необходимо упростить первую из них методом разложения на множители.

однако необходимо не забыть про условие сокращения дроби, т. е. про то, что

После всех сокращений мы получаем, что

 лишь с тем отличием, что .

Построим график двух функций.

Мы видим яркое различие этих двух графиков: по сути они одинаковы, но на первом графике нам необходимо выколоть точку с координатой (1;0), поскольку эта точна не входит в ОДЗ первой функции.

Итого, мы с вами рассмотрели, что такое дробь,  решили пару примеров о том, как важно следить за областью определения (областью допустимых значений), т. е. за теми значениями, которые может принимать .

3. Действия, которые можно производить с алгебраическими дробями

Теперь перейдём к вопросу, какие действия можно производить с алгебраическими дроями, помимо тех, которые уже были упомянуты выше.

Естественно, алгебраические дроби, как и арифметические дроби, можно складывать, вычитать, умножать, делить, возводить в степень, получая при этом рациональные алгебраические выражения (такие выражения, которые составлены из чисел, переменных с помощью арифметических операций и возведения в натуральную степень). После определённых упрощений подобные выражения сводятся к дробям, для которых исходными выражениями также являются алгебраические дроби.

Список действий / условий, с которыми можно столкнуться, решая задачи на алгебраические дроби:

- Упростить рациональные выражения

- Доказать тождества

- Решать рациональное уравнение

- Упростить/вычислить дробь

4. Решение задач

Пример №3

Решить простейшее рациональное уравнение

Дробь равна 0 тогда и только тогда, когда числитель равен 0, а знаменатель не равен 0. В нашем случае знаменатель равен . Значит, решение дроби сводится к линейному уравнению

Ответ:

Пример №4

Решить уравнение

В первую очередь попытаемся сократить дробь

, при условии, что .

Поскольку мы уже упростили дробь в левой части исходного уравнения, то можем подставить новое значение и решить уравнение.

Теперь давайте попробуем выделить полный квадрат из полученного квадратного уравнения

Воспользуемся формулой сокращённого умножения для разности квадратов

Произведение равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. К тому же не забываем, что в начале у нас появилось условие существования нашего выражения в виде  . Запишем же систему уравнений.

 =>  =>  Мы видим, что  противоречит нашему условию, что , поэтому у нас остаётся только один ответ .

Ответ: .

Итак, посмотрим на особенности, которые имеет решённый нами выше пример:

1. Числитель с разностью кубов и знаменатель желательно сократить сразу, поскольку это возможно в данном случае и сильно упростит дальнейшее решение уравнения, однако обязательно нужно помнить о том, что знаменатель дроби не может равняться, 0 и записать это условие.

2. Приведя дробь к квадратному уравнению, мы вспомнили один из методов решения квадратных уравнений – метод выделения полного квадрата.

5. Вывод

Мы с вами на данном уроке вспомнили, что такое алгебраическая дробь, какие действия необходимо производить с числителем и знаменателем при решении таких дробей, какие действия в общем можно производить с дробями такого вида и решили несколько простых задач.

 

Список литературы

  1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. – М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Вся элементарная математика (Источник).
  2. Школьный помощник (Источник).
  3. Интернет-портал Testmath.com.ua (Источник).

 

Домашнее задание

  1. Сократите дроби: а)   б)
  2. Решите уравнение  
  3. №12, №16 Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. – М.: Просвещение, 2010.