Классы
Предметы

Определения и свойства четных и нечетных функций

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Определения и свойства четных и нечетных функций

На этом уроке мы дадим строгие определения четных и нечетных функций, рассмотрим их свойства и решим некоторые задачи. Важным свойством четной функции является симметричность графика функции относительно оси у, важным свойством нечетной функции является симметричность графика относительно точки начала координат. Также на уроке мы выработаем методику исследования функции на четность и нечетность и решим ряд задач.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Функции»

Тема урока, введение

В этом уроке будут даны строгие определения четных и нечетных функций, рассмотрены их свойства, решены некоторые задачи.

Основные определения

Определение 1: Функция  называется четной, если для любого значения x из множества X выполняется равенство:

Определение 2: Функция  называется нечетной, если для любого значения x из множества X выполняется равенство:

Примеры:

1.  четная, т.к.

2.  нечетная, т.к.

3.  четная,

4. нечетная, .

Дадим развернутое определение четной функции.

Определение 3: Функцию  называют четной, если выполнены два условия для всех

1. Область определения симметрична относительно нуля, т.е.

2.

Из определения вытекает важное свойство четной функции:

График четной функции симметричен относительно оси y (Рис. 1).

Дадим развернутое определение нечетной функции.

Определение 4: Функцию  называют нечетной, если выполнены два условия для всех

1. Область определения симметрична относительно нуля,  т.е.

2.

Из определения нечетной функции вытекает свойство: График нечетной функции симметричен относительно т. (0; 0) (Рис. 2).

Если функция  не является ни четной, ни нечетной, то ее называют функцией общего вида.

Примеры

Примеры:

Пример 1. Определите вид функции

 четная функция, ее график симметричен относительно оси y.

Пример 2. Определите вид функции

В точке  функция не существует, а в точке  существует. Область определения несимметрична относительно нуля, значит функция общего вида.

Пример 3.Определите вид функции

Обе точки выколотые, график и область определения симметричны относительно начала координат, функция четная.

Пример 4. Определите вид функции

рафик и область определения симметричны относительно начала координат, функция нечетная.

Пример 5. Определите вид функции

В точке с абсциссой 2 функция не существует, в точке с абсциссой -2 существует. Область определения несимметрична относительно нуля, это функция общего вида.

Пример 6. Определите вид функции

Область определения симметрична относительно нуля, функция нечетная.

Примеры на исследование функции

Рассмотрим примеры на свойства четных и нечетных функций.

Пример 7: Исследовать на четность функцию

Решение:

Первый способ:

 

 

,функция четная.

Второй  способ:

Возведем в квадрат обе части равенства. Тогда вместо уравнения получим систему:

 

Второе уравнение полученной системы – уравнение окружности с центром в т.(0; 0) радиусом 4. Но т.к.  , графиком уравнения является верхняя полуокружность (Рис. 9).

График симметричен относительно оси y, поэтому функция четная.

Ответ: Функция четная.

Пример 8. Известно, что функция  четная и убывает при  Определите характер монотонности функции при

Решение:

Нам известно, что функция убывает на луче . Раз она определена на луче  и является четной, то она определена и на луче

График четной функции симметричен относительно оси y, т.е. функция возрастает на луче

В качестве примера изобразим график функции  (Рис. 10).

Ответ: Функция возрастает при

Пример 9. Дана функция , где

Задайте  так, чтобы функция  являлась

а. четной

б. нечетной.

Решение:

Если функция четная, ее график симметричен относительно оси y, т.е.  (Рис. 11).

Если функция нечетная, ее график симметричен относительно т. (0; 0), т.е.  (Рис. 12).

Заключение, вывод

Мы рассмотрели определения и свойства четных и нечетных функций, решили некоторые типовые задачи На следующем уроке мы продолжим изучение свойств четных и нечетных функций.

 

Список рекомендованной литературы

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

 

Рекомендованные ссылки на интернет-ресурсы

1. Раздел College.ru по математике (Источник).

2. Интернет-проект «Задачи» (Источник).

3. Образовательный портал «РЕШУ ЕГЭ» (Источник).

 

Рекомендованное домашнее задание

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 275 – 278.