Уважаемые пользователи! В связи с блокировкой Роскомнадзором хостингов Telegram наш сайт (как и некоторые другие сайты Интернета), а также оплата абонементов могут быть недоступны или работать некорректно для части пользователей. Просим всех столкнувшихся с проблемами обращаться по адресу info@interneturok.ru.
Классы
Предметы

Графический метод решения системы уравнений

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Графический метод решения системы уравнений

На этом уроке мы будем рассматривать решение систем двух уравнений с двумя переменными. Вначале рассмотрим графическое решение системы двух линейных уравнений, специфику совокупности их графиков. Далее решим несколько систем графическим методом.

Тема: Системы уравнений

Урок: Графический метод решения системы уравнений

1. Тема урока, основные определения

Рассмотрим систему

Пару чисел  которая одновременно является решением и первого и второго уравнения системы, называют решением системы уравнений.

Решить систему  уравнений – это значит найти все её решения, или установить, что решений нет. Мы рассмотрели графики основных уравнений, перейдем к рассмотрению систем.

2. Решение линейной системы уравнений

Пример 1. Решить систему

Решение:   

Это линейные уравнения, графиком каждого из них является прямая. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и есть решение системы уравнений (Рис. 1).

Решением системы является пара чисел  Подставив эту пару чисел в каждое уравнение, получим верное равенство.

Мы получили единственное решение линейной системы.

Ответ:

Вспомним, что при решении линейной системы возможны следующие случаи:

cистема имеет единственное решение – прямые пересекаются,

система не имеет решений – прямые параллельны,

система имеет бесчисленное множество решений – прямые совпадают.

Мы рассмотрели частный случай системы, когда p(x; y) и q(x; y) – линейные выражения от x и y.

3. Решение нелинейных систем уравнений

Пример 2. Решить систему уравнений

Решение:  

График первого уравнения – прямая, график второго уравнения – окружность. Построим первый график по точкам (Рис. 2).

  x  

  0  

  -1  

  y

  1

   0

Центр окружности в точке О(0; 0), радиус равен 1.

Графики пересекаются в т. А(0; 1) и т. В(-1; 0).

Ответ:

Пример 3. Решить систему графически

Решение: Построим график первого уравнения – это окружность с центром в т.О(0; 0) и радиусом 2. График второго уравнения – парабола. Она сдвинута относительно начала координат на 2 вверх, т.е. ее вершина – точка (0; 2) (Рис. 3).

Графики имеют одну общую точку – т. А(0; 2). Она и является решением системы. Подставим пару чисел в уравнение, чтобы проверить правильность.

Ответ:

Пример 4. Решить систему

Решение: Построим график первого уравнения – это окружность с центром в т.О(0; 0) и радиусом 1 (Рис. 4).

Построим график функции  Это ломаная (Рис. 5).

Теперь сдвинем ее на 1 вниз по оси oy. Это и будет график функции

Поместим оба графика в одну систему координат (Рис. 6).

Получаем три точки пересечения – т. А(1; 0), т. В(-1; 0), т. С(0; -1).

Ответ:

4. Заключение, вывод

Мы рассмотрели графический метод решения систем. Если можно построить график каждого уравнения и найти координаты точек пересечения, то этого метода вполне достаточно.

Но часто графический метод даёт возможность найти только приближенное решение системы или ответить на вопрос о количестве решений. Поэтому нужны и другие методы, более точные, и ими мы займемся на следующих уроках.

 

Список рекомендованной литературы

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

 

Рекомендованные ссылки на интернет-ресурсы

1. Раздел College.ru по математике (Источник).

2. Интернет-проект «Задачи» (Источник).

3. Образовательный портал «РЕШУ ЕГЭ» (Источник).

 

Рекомендованное домашнее задание

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 105, 107, 114, 115.