Классы
Предметы

Расстояние от точки до плоскости. Теорема о трех перпендикулярах

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Расстояние от точки до плоскости. Теорема о трех перпендикулярах

На этом уроке мы введем понятия расстояния от точки до плоскости, рассмотрим и докажем важнейшую теорему о трех перпендикулярах.
Вначале введем понятие перпендикуляра, наклонной и проекции и покажем построение отрезка, являющегося расстоянием между точкой и плоскостью, дадим строгое определение этого расстояния. Далее дадим определение расстояния между двумя параллельными плоскостями и покажем построение этого отрезка. Также дадим определение расстояния между прямой и параллельной ей плоскостью.
Далее дадим формулировку теоремы о трех перпендикулярах и докажем ее. Также сформулируем и докажем обратную теорему.
В конце урока решим несколько задач с использованием теоремы о трех перпендикулярах.

Тема: Перпендикуляр и наклонные

Урок: Расстояние от точки до плоскости. Теорема о трех перпендикулярах

Тема урока

На этом уроке мы введем понятия расстояния от точки до плоскости, рассмотрим и докажем важнейшую теорему о трех перпендикулярах.

Расстояние от точки до плоскости

Рассмотрим плоскость α и точку А, которая лежит вне этой плоскости (рис. 1). Как известно, из точки А можно провести единственную прямую АH перпендикулярную плоскости α. Проведем прямую АН перпендикулярно плоскости α, .

Рис. 1.

Определение. Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α. То есть, перпендикуляр – это отрезок.

Определение. Пусть точка М другая произвольная точка плоскости α. Тогда отрезок АМ называется наклонной, а отрезок МН называется проекцией наклонной АМ на плоскость α. 

Определение. Расстоянием от точки А до плоскости α называют длину перпендикуляра АН. Обозн.: ρ(А; α) = АН. Заметим, что АН – наименьшее из расстояний между точкой А и любой точкой плоскости.Действительно, в прямоугольном треугольнике АНМ перпендикуляр (катет АН) короче наклонной (гипотенузы АМ).

Таким образом, чтобы найти расстояние между точкой и плоскостью, нужно найти длину перпендикуляра от точки до плоскости.

Расстояние между параллельными плоскостями

Плоскость α и плоскость β параллельны. На плоскости β выберем произвольную точку А (рис. 2). Из точки А опустим перпендикуляр АА0 на плоскость α. Перпендикуляр АА0 и назовем расстоянием между плоскостями α и β.

Рис. 2. Расстояние между параллельными плоскостями

Заметим, что длина этого перпендикуляра не зависит от того, какую точку мы выбрали.

 Например, выберем другую точку В, опустим перпендикуляр ВВ0. Прямые  АА0 и ВВ0 перпендикулярны одной и той же плоскости, значит, прямые  АА0 и ВВ0 параллельны. Тогда из свойств параллельных плоскостей отрезки АА0 и ВВ0 равны.

Расстояние между прямой и плоскостью

Расстояние между прямой и плоскостью определяется в случаях, когда прямая параллельна плоскости. Тогда все точки прямой а равноудалены от плоскости α. Выберем любую точку А на прямой а, опустим перпендикуляр АА0 на плоскость α (рис. 3). Длина перпендикуляра АА0 и называется расстоянием между прямой а и параллельной ей плоскостью α.

Обозн.: АА0 = р(а; α).

Рис. 3. Расстояние между прямой и плоскостью

5. Теорема о трех перпендикулярах

Теорема о трех перпендикулярах

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

Дано:

 

 

 

Доказать:

 

Рис. 4.

Доказательство:

Пусть нам дана плоскость α (рис. 4). Проведем перпендикуляр АН к плоскости α, АМ - наклонная, М – основание наклонной. НМ – это проекция наклонной АМ на плоскость α. В плоскости α проведем прямую а через основание наклонной М перпендикулярно проекции НМ. Нужно доказать, что прямая а перпендикулярна наклонной АМ.

Прямая АН перпендикулярна плоскости α, а значит, и всем прямым, лежащим в ней. Значит, прямая АН перпендикулярна прямой а. Прямая НМ перпендикулярна прямой а по условию. Имеем, что прямая а перпендикулярна двум пересекающимся прямым АН и НМ плоскости АНМ, значит, по признаку, прямая а перпендикулярна плоскости АНМ.Прямая АМ лежит в плоскости АНМ. Значит, прямая а перпендикулярна прямой АМ, что и требовалось доказать.

6. Обратная теорема

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции. 

Дано:

 

 

 

Доказать:

 

Доказательство:

Пусть нам дана плоскость α (рис. 4). Проведем перпендикуляр АН к плоскости α, АМ - наклонная. НМ – это проекция наклонной АМ на плоскость α. В плоскости α проведем прямую а через основание наклонной М перпендикулярно наклонной AМ. Нужно доказать, что прямая а перпендикулярна проекции HМ.

Прямая АН перпендикулярна плоскости α, а значит, и всем прямым, лежащим в ней. Значит, прямая АН перпендикулярна прямой а. Прямая AМ перпендикулярна прямой а по условию. Имеем, что прямая а перпендикулярна двум пересекающимся прямым АН и AМ плоскости АНМ, значит, по признаку, прямая а перпендикулярна плоскости АНМ.Прямая HМ лежит в плоскости АНМ. Значит, прямая а перпендикулярна прямой HМ, что и требовалось доказать.

7. Замечание к теореме о трех перпендикулярах

В доказанной прямой и обратной теореме точка М (основание наклонной) лежала на прямой , лежащей в плоскости α. Давайте проведем в плоскости α другую прямую а, которая параллельна . Тогда углы между прямыми a, АМ, НМ не изменятся. И из перпендикулярности прямой а и прямой АМ будет вытекать перпендикулярность прямой а и прямой НМ и наоборот.

Рис. 5.

8. Задача 1

Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен

а) Найти наклонную и ее проекцию на данную плоскость, если перпендикуляр равен d.

б) Найти перпендикуляр и проекцию наклонной, если наклонная равна m.

Рис. 6.

а) Дано:

 

 

 

Найти:

 

Решение:

Итак, имеем плоскость α, точку А,  (рис. 6). Вспомним, перпендикуляром называется отрезок АН, который проведен из точки А к плоскости , АМ – наклонная.

Мы имеем треугольник АНМ. Этот треугольник прямоугольный. Для того чтобы найти гипотенузу АМ, нужно катет АН разделить на косинус прилежащего угла НАМ.

Найдем катет НМ.

Ответ:

б) Дано:

 

 

 

Найти:

 

Решение:

АН перпендикуляр, АМ – наклонная, угол между ними , известна длина наклонной АМ. Нужно найти длину перпендикуляра АН и длину проекции НМ

Задача снова свелась к решению прямоугольного треугольника НАМ. Найдем катет АН.

Найдем катет .

Ответ:

9. Задача 2

Через вершину А прямоугольного треугольника АВС с прямым углом С проведена прямая АD, перпендикулярная к плоскости треугольника. 

а) докажите, что треугольник СВD прямоугольный.

б) найдите ВD, если ВС = а, DС = b

Рис. 7.

Дано: ∆АСВ = 90°, АDАВС.

ВС = а, DС = b

Доказать: ∆CBDпрямоугольный.

Найти: ВD

Решение:

а) Треугольник АВС прямоугольный, угол при вершине С прямой.

АD перпендикуляр к плоскости АВС. Требуется доказать, что треугольник СВD прямоугольный. Для наклонной отрезок АС является проекцией, потому что DA перпендикуляр ко всей плоскости АВС. По условию прямая ВС, лежащая в плоскости треугольника, перпендикулярна проекции наклонной АС, значит, по теореме о трёх перпендикулярах она перпендикулярна и самой наклонной CD. То есть ВСCD, а значит ∆ВСD прямоугольный.

б) Найдем гипотенузу ВD из прямоугольного треугольника СВD с помощью теоремы Пифагора.

Ответ:

10. Задача 3

Отрезок - перпендикуляр к плоскости квадрата АВСD, где точка О – центр квадрата.

Доказать: ВDSC

Рис. 8.

Доказательство:

Первый способ.

Имеем квадрат, центр квадрата точка О, - перпендикуляр. Значит, для наклонной SC отрезок ОС есть проекция.

Прямая ВD перпендикулярна прямой ОС, которая является проекцией наклонной SC, значит, по теореме о трех перпендикулярах, прямая ВD перпендикулярна наклонной SC

Второй способ.

Прямая перпендикулярна плоскости АВС, а значит, и прямой ВD, лежащей в ней.

Прямая ВD перпендикулярна и прямая ВD перпендикулярна прямой АС по свойству квадрата.

Получаем, что прямая ВD перпендикулярна двум пересекающимся прямым плоскости SОС, значит, она перпендикулярна ко всей плоскости SОС, а значит, и к прямой SC, лежащей в этой плоскости.

10. Итоги урока

Мы рассмотрели расстояния от точки до плоскости, доказали и обсудили теорему о трех перпендикулярах. На следующем уроке мы рассмотрим угол между прямой и плоскостью.

 

Список рекомендованной литературы по теме "Расстояние между точкой и плоскостью", "Теорема о трех перпендикулярах"

1. Геометрия. 10-11 класс : учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М. : Мнемозина, 2008. – 288 с. : ил.

2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.

3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е издание, стереотип. – М. : Дрофа, 008. – 233 с. :ил.

 

Рекомендованные ссылки на ресурсы интернет

1. Фестиваль педагогических идей "Первое сентября" (Источник)

2. Nado5.ru (Источник)

3. Школьные страницы (Источник)

4. Школьные страницы (Источник)

 

Рекомендованное домашнее задание для вычисления расстояния между точкой и плоскостью

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М.: Мнемозина, 2008. – 288 с.: ил.

Задания 2, 3 стр. 65

2. С точки на плоскость опущен перпендикуляр длиной 8 см и наклонная длиной 12 см. Найдите длину проекции наклонной на плоскость.

3. С одной точки на плоскость проведены две равные наклонные. Докажите, что проекции наклонных равны.

4. Дан ромб. О – точка пересечения диагоналей ромба. Прямая МО перпендикулярна плоскости ромба. Докажите, что точка М равноудалена от сторон ромба.