Классы
Предметы

Смежные и вертикальные углы

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Смежные и вертикальные углы

На данном уроке мы рассмотрим и уясним для себя понятие смежные углы. Рассмотрим теорему, которая их касается. Введем понятие «вертикальные углы». Рассмотрим опорные факты, касающиеся этих углов. Далее сформулируем и докажем два следствия об угле между биссектрисами вертикальных углов. В конце занятия рассмотрим несколько задач, посвященных этой теме.

Понятие «смежные углы», сумма смежных углов

Начнем наш урок с понятия «смежные углы». На рисунке 1 изображен развернутый угол ∠АОС и луч ОВ, который делит данный угол на 2 угла.

                                

Рис. 1. Угол ∠АОС

Рассмотрим углы ∠АОВ и ∠ВОС. Вполне очевидно, что они имеют общую сторону ВО, а стороны АО и ОС являются противолежащими. Лучи ОА и ОС дополняют друг друга, а значит, они лежат на одной прямой. Углы ∠АОВ и ∠ВОС являются смежными.

Определение: Если два угла имеют общую сторону, а две другие стороны являются дополняющими лучами, то данные углы называются смежными.

Теорема 1: Сумма смежных углов – 180о.

                              

Рис. 2. Чертеж к теореме 1

∠МОL + ∠LON = 180o. Данное утверждение является верным, так как луч OL делит развернутый угол ∠MON на два смежных угла. То есть мы не знаем градусных мер ни одного из смежных углов, а знаем лишь их сумму – 180о.

Вертикальные углы

Рассмотрим пересечение двух прямых. На рисунке изображено пересечение двух прямых  в точке О.

    

Рис. 3. Вертикальные углы ∠ВОА и ∠СОD

Определение: Если стороны одного угла являются продолжением второго угла, то такие углы называются вертикальными. Именно поэтому на рисунке изображено две пары вертикальных углов: ∠АОВ и ∠СОD, а также ∠AOD и ∠ВОС.

Теорема 2: Вертикальные углы равны.

Используем рисунок 3. Рассмотрим развернутый угол ∠АОС. ∠АОВ = ∠АОС – ∠ВОС = 180о – β. Рассмотрим развернутый угол ∠ВОD. ∠CОD = ∠BОD – ∠BОС = 180о – β.

Из этих соображений мы делаем вывод, что ∠АОВ = ∠СОD = α. Аналогично, ∠AOD = ∠ВОС = β.

Следствия из теорем о смежных и вертикальных углах

Следствие 1: Угол между биссектрисами смежных углов равен 90о.

                             

Рис. 4. Чертеж к следствию 1

Поскольку ОL – биссектриса угла ∠ВОА, то угол ∠LOB =  , аналогично ∠ВОК =  . ∠LOK = ∠LOB + ∠BOK =  +    =  . Сумма углов α + β равна 180о, поскольку данные углы – смежные.

Следствие 2: Угол между биссектрисами вертикальных углов равен 180о.

                  

Рис. 5. Чертеж к следствию 2

Очевидно, что ∠KOL = ∠KOB + ∠BOC + ∠COL =  o. Сумма углов α + β равна 180о, так как данные углы – смежные.

Задачи

Рассмотрим некоторые задачи:

Пример 1:

Найдите угол, смежный с ∠АOС, если ∠АOС = 111о.

Решение:

Выполним чертеж к задаче:

                             

Рис. 6. Чертеж к примеру 1

Решение

Поскольку ∠АОС = β и ∠СOD = α смежные углы, то α + β = 180о. То есть 111о + β = 180о.

Значит, β = 69о.

Этот тип задач эксплуатирует теорему о сумме смежных углов.

Пример 2:

Один из смежных углов прямой, каким (острым, тупым или прямым) является другой угол?

Решение:

Если один из углов прямой, а сумма двух углов 180о, то и другой угол тоже прямой. Эта задача проверяет знания о сумме смежных углов.

Пример 3:

Верно ли, что если смежные углы равны, то они прямые?

Решение:

Составим уравнение: α + β = 180о, но поскольку α = β, то β + β = 180о, значит, β = 90о.

Ответ: Да, утверждение верно.

Пример 4:

Даны два равных угла. Верно ли, что и смежные им углы тоже будут равны?

Решение:

                                                   

Рис. 7. Чертеж к примеру 4

Если два угла равны α, то соответствующие им смежные углы будут 180о – α. То есть они будут равны между собой.

Ответ: Утверждение верно.

 

Список рекомендованной литературы

  1. Александров  А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5-е изд. – М.: Просвещение.
  3. \Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузова, С.Б. Кадомцев, В.В. Прасолова, под редакцией В.А. Садовничего. – М.: Просвещение, 2010.

 

Рекомендованные ссылки на интернет-ресурсы

  1. Измерение отрезков (Источник).
  2. Обобщающий урок по геометрии в 7-м классе (Источник).
  3. Прямая линия, отрезок (Источник).

 

Рекомендованное домашнее задание

  1. № 13, 14. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузова, С.Б. Кадомцев, В.В. Прасолова, под редакцией В.А. Садовничего. – М.: Просвещение, 2010.
  2. Найдите два смежных угла, если один из них в 4 раза больше другого.
  3. Дан угол. Постройте для него смежный и вертикальный углы. Сколько таких углов можно построить?
  4. * В каком случае получается больше пар вертикальных углов: при пересечении трех прямых в одной точке или в трех точках?