Классы
Предметы

Признаки параллельности прямых

Посмотрев данный видеоурок, вы сможете самостоятельно изучить тему «Признаки параллельности прямых», которая входит в школьный курс геометрии за 7 класс. В начале урока учитель даст определение параллельных прямых и научит школьников правильному их обозначению. Затем преподаватель расскажет о значении параллельных прямых и даст несколько примеров параллельных прямых.

Понятие «параллельность прямых», его обоснование

Две прямые на плоскости называются параллельными, если они не пересекаются. Обозначается это так: .

Рис. 1

Отрезки AB и CD, лежащие на параллельных прямых, называются параллельными.

Лучи, лежащие на параллельных прямых, также называются параллельными.

Задумаемся, неужели а и b нигде не пересекутся? И существуют ли такие прямые? Ведь а и b не ограничены. И в соседней комнате не пересекутся? И на луне?

Оказывается, такие прямые существуют.

Мы доказывали, что перпендикулярная прямая а к прямой с и перпендикулярная прямая b к прямой с нигде не пересекаются (Рис. 2).

Рис. 2

То есть две перпендикулярные прямые к одной и той же третьей прямой нигде не пересекутся. Оказывается, для этих прямых есть термин.

.

Накрест лежащие углы, односторонние и соответственные углы

Рассмотрим важную геометрическую конструкцию, в которой две прямые а и рассекаются прямой с (Рис. 3).

Рис. 3

с – секущая а и b. Это означает, что она пересекает и а, и b.

Возникает много углов (1, 2, 3, 4, 5, 6, 7, 8).

Эти углы называются:

- накрест лежащие углы: , ;

- односторонние углы: , ∠3 и ∠6;

- соответственные углы: , , , .

 – смежные углы.

 – вертикальные углы.

Признаки параллельности прямыx

Сформулируем и докажем первый признак параллельности прямых.

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Итак, даны две прямые а и b. Прямая АВ рассекает эти прямые и  (Рис. 4).

Рис. 4

Докажем, что .

Доказательство:

Рис. 5

Возьмем середину отрезка АВ – точку О – и опустим перпендикуляр ОН на прямую а. Получим точку Н. Получим отрезок АН. Отложим от точки В по прямой b отрезок, равный длине отрезка АН. Получим точку , причем .

Имеем два треугольника  и . Эти треугольники равны по первому признаку (то есть по двум сторонам и углу между ними): (по условию), (по построению), ОА = ОВ (по построению).

Из равенства треугольников следует, что . А значит – это продолжение ОН, то есть точки О, Н и  лежат на одной прямой.

Также . Значит, прямая Н перпендикулярна к прямой b.

Итак, мы имеем, что , . А значит, , что и требовалось доказать.

Второй признак параллельности прямых

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Имеем: а, b, с – прямые; с – секущая,.

Рис. 6

Доказательство:

Значит, .

Применим первый признак параллельности прямых и получим, что .

Третий признак параллельности прямых

Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

Имеем: а, b, с – прямые; с – секущая, (Рис. 7).

Рис. 7

Доказательство:

Значит,  .

Применим первый признак параллельности прямых и получим, что .

Решение задач

Признаки параллельности прямых используются для решения разных задач.

Рассмотрим пример:

а, b, с – прямые; с – секущая,,  (Рис. 8)

Рис. 8

Сведем к одному из признаков параллельности прямых.

Следовательно,. По третьему признаку параллельности прямых.

На этом уроке мы рассмотрели понятие параллельных и прямых и разобрали признаки параллельности прямых, научились их применять. На следующем занятии мы разберем свойства параллельных прямых.

 

Список рекомендованной литературы

  1. Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5 изд. – М.: Просвещение.
  3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. – М.: Просвещение, 2010.

 

Рекомендованные ссылки на интернет-ресурсы

  1. Параллельные прямые (Источник).
  2. Параллельные прямые (Источник).
  3. Признаки параллельности двух прямых (Источник).

 

Рекомендованное домашнее задание

  1. Нарисуйте произвольный треугольник АВС. Отметьте точку М на стороне АВ. Через точку М проведите прямые, параллельные двум другим сторонам.
  2. Прямая АВ пересекает прямую CD в точке А, а прямую MN в точке В. . Параллельны ли прямые CD и MN?
  3. В треугольнике АВС ВК – биссектриса. Точка К  принадлежит АС. Точка М – середина стороны ВС. Доказать, что .