Классы
Предметы

Третий признак параллелограмма

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Третий признак параллелограмма

Данный урок посвящён третьему признаку параллелограмма и его применению. На предыдущем уроке были изучены первый и второй признаки параллелограмма, которые основывались на свойствах сторон и углов параллелограмма. Третий признак основан на свойстве диагоналей параллелограмма. А именно, на том, что диагонали параллелограмма в точке пересечения делятся пополам. Признаки параллелограмма очень важны при решении целого ряда задач, поскольку позволяют доказывать то, что четырёхугольник является параллелограммом, а, значит, можно пользоваться его свойствами.

Тема: Четырехугольники

Урок: Третий признак параллелограмма

1. Повторение: определение и свойства параллелограмма

Напомним, что параллелограмм – это четырёхугольник, у которого противоположные стороны попарно параллельны. То есть, если  – параллелограмм, то  (см. Рис. 1).

Рис. 1

Параллелограмм обладает целым рядом свойств: противоположные углы равны (), противоположные стороны равны (). Кроме того, диагонали параллелограмма в точке пересечения делятся пополам, сумма углов, прилежащих к любой стороне параллелограмма, равна  и т.д.

Но для того, чтобы пользоваться всеми этими свойствами, необходимо быть абсолютно уверенными в том, что рассматриваемый четырёхугольник – параллелограмм. Для этого и существуют признаки параллелограмма: то есть те факты, из которых можно сделать однозначный вывод, что четырёхугольник является параллелограммом. На предыдущем уроке мы уже рассмотрели два признака. Сейчас рассмотрим третий.

2. Третий признак параллелограмма и его доказательство

Если в четырёхугольнике диагонали в точке пересечения делятся пополам, то данный четырёхугольник является параллелограммом.

Дано:

 – четырёхугольник; ; .

Доказать:

 – параллелограмм.

Доказательство:

Для того чтобы доказать данный факт, необходимо доказать параллельность сторон параллелограмма. А параллельность прямых чаще всего доказывается через равенство внутренних накрест лежащих углов при этих прямых. Таким образом, напрашивается следующий способ доказательства третьего признака параллелограмма: через равенство треугольников .

Докажем равенство этих треугольников. Действительно, из условия следует: . Кроме того, поскольку углы  – вертикальные, то они равны. То есть:

 (первый признак равенстватреугольников – по двум сторонам и углу между ними).

Из равенства треугольников:  (так как равны внутренние накрест лежащие углы при этих прямых и секущей ). Кроме того, из равенства треугольников следует, что . Значит, мы получили, что в четырёхугольнике две стороны равны и параллельны. По первому признаку параллелограмма:  – параллелограмм.

Доказано.

3. Пример задачи на третий признак параллелограмма и обобщение

Рассмотрим пример на применение третьего признака параллелограмма.

Пример 1

Дано:

 – параллелограмм; .  – середина ,  – середина ,  – середина ,  – середина  (см. Рис. 2).

Рис. 2

Доказать: – параллелограмм.

Доказательство:

Значит, в четырёхугольнике  диагонали в точке пересечения делятся пополам. По третьему признаку параллелограмма из этого следует, что  – параллелограмм.

Доказано.

Если провести анализ третьего признака параллелограмма, то можно заметить, что этот признак соответствует свойству параллелограмма. То есть, то, что диагонали делятся пополам, является не просто свойством параллелограмма, а его отличительным, характеристическим свойством, по которому его можно выделить из множества четырёхугольников.

На следующем уроке мы рассмотрим решение различных задач про параллелограмм.

 

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Terver.ru (Источник).
  2. Фестиваль педагогических наук "Открытый урок" (Источник).

 

Домашнее задание

  1. № 51 (г), 52 (ж) Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  2. Диагонали четырёхугольника  пересекаются в точке . Является ли данный четырёхугольник параллелограммом, если , , , . Ответ обоснуйте.
  3. Диагонали четырёхугольника  пересекаются в точке . Известно, что . Докажите, что данный четырёхугольник – параллелограмм.