Классы
Предметы

Задачи на параллелограмм

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Задачи на параллелограмм

На уроке мы, прежде всего, повторим уже изученные ранее свойства и признаки параллелограмма и все основные понятия, которые связаны с этой геометрической фигурой. Главной целью занятия будет рассмотрение нескольких примеров на применение знаний о параллелограмме. В процессе решения примеров познакомимся с важнейшей теоремой, связанной с параллельностью прямых, – теоремой Фалеса.

Повторение определения, свойств и признака параллелограмма

Сегодня мы основное внимание уделим задачам на параллелограмм. Для этого нам необходимо владеть определением параллелограмма, его свойствами и признаками. Повторим эти факты, обобщим и структурируем их.

Определение. Параллелограмм – четырехугольник, у которого каждые две противоположные стороны параллельны (см. Рис. 1).

 

Рис. 1. Параллелограмм

Основные свойства параллелограмма:

 

Теорема. Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны (см. Рис. 2), то этот четырехугольник – параллелограмм.  параллелограмм.

Рис. 2. Первый признак параллелограмма

Рис. 3. Второй признак параллелограмма

Теорема. Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны (см. Рис. 3), то этот четырехугольник – параллелограмм.  параллелограмм.

Теорема. Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам (см. Рис. 4), то этот четырехугольник – параллелограмм.  параллелограмм.

Рис. 4. Третий признак параллелограмма

Задачи на параллелограммы

Теперь рассмотрим решение задач с использованием определения, свойств и признаков параллелограмма.

Пример 1. В параллелограмме  проведены биссектрисы  и , которые пересекаются в точке . Найти .

Решение. Изобразим Рис. 5.

Рис. 5

Обозначим для удобства: . Следовательно,  поскольку  и  биссектрисы.

По теореме о сумме внутренних углов треугольника .

Вспомним свойство параллелограмма о сумме углов, прилежащих к одной стороне: . Тогда:

.

Ответ. .

Пример 2. Прямая , проведенная через середину  стороны  параллельно стороне  треугольника  пересекает третью его сторону в середине. Доказать, что  – это середина .

Доказательство. Изобразим Рис. 6 с дополнительными построениями: проведем .

Рис. 6

Рассмотрим четырехугольник :

 параллелограмм по определению. Тогда по свойству равенства противоположных сторон , но по условию еще известно, что , следовательно, .

Рассмотрим треугольники  и :

 по второму признаку равенства треугольников (по стороне и прилежащим углам).

Из равенства указанных треугольников следует равенство их соответствующих сторон, т.е., например, что . Это означает, что точка  является серединой стороны . Что и требовалось доказать.

Доказано.

3. Теорема Фалеса

Теорема Фалеса. Если параллельные прямые, которые пересекают стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство. Изобразим Рис. 7.

Рис. 7. Теорема Фалеса

Рассмотрим . В нем точка  – середина стороны , а прямая . Из предыдущего примера следует, что точка  делит сторону   на две равные части, т.е. . Равенство двух отрезков, ближайших к вершине угла доказано. Аналогично доказывается попарное равенство всех остальных отрезков на второй стороне угла, если проводить прямые параллельные первой стороне угла через начало первого отрезка в любой рассматриваемой паре.

Доказано.

4. Пример задачи на применение теоремы Фалеса

Рассмотрим пример на доказанную теорему.

Пример 3. Дан отрезок , разделить его на три равные части.

Решение. Изобразим указанный отрезок на Рис. 8 и сделаем дополнительные построения: отложим три равных отрезка любой длины  вдоль одной прямой, не совпадающей с указанным в условии отрезком.

Рис. 8. Применение теоремы Фалеса

Соединим прямой точки  и , а затем проведем прямые, параллельные прямой , через точки  и : . Полученные при пересечении отрезка точки  и  будут делить отрезок  на три равных части по теореме Фалеса. Необходимое построение выполнено и задача решена.

Ответ: построено.

Методы, которые мы рассмотрели сегодня на примерах, демонстрирующих свойства и признаки параллелограмма, помогут нам в дальнейшем при работе с параллелограммами в более сложных случаях. А на следующем уроке мы познакомимся с таким видом четырехугольников, как трапеция, и обсудим ее свойства.

 

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Narod.ru (Источник).
  2. Фестиваль педагогических наук "Открытый урок" (Источник).

 

Домашнее задание

  1. №  50 (г, д, е, ж, з, и), 51 (б, в, г, ж), 52 (б, в, е, ж). Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  2. В параллелограмме   см,  см, биссектрисы углов  и  пересекают сторону  в точках  и . Найдите длину отрезка .
  3. Угол между высотами параллелограмма, проведенными из вершины тупого угла, равен . Найдите периметр параллелограмма, если его высоты равны 4 см и 6 см.
  4. Через середину  диагонали  параллелограмма  проведена прямая, которая пересекает стороны  и  в точках  и  соответственно. Докажите, что четырехугольник  параллелограмм.