Классы
Предметы

Центральный угол. Градусная мера дуги окружности

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Центральный угол. Градусная мера дуги окружности

На этом уроке мы познакомимся с понятиями центрального угла и градусной меры дуги окружности.

Основные определения

Напомним определение окружности. Сейчас мы дадим определение с ошибкой, задача – найти эту ошибку.

Определение:

Окружностью с центром в точке О и радиусом R называют множество точек плоскости, удаленных от одной точки – центра окружности О – на расстояние R.

Очевидно, что ошибка – пропущенное важное слово всех, то есть окружность – множество всех точек, равноудаленных от ее центра.

Например, вершины A, B, C, D квадрата – это множество точек, равноудаленных от центра квадрата, но это не есть окружность (рис. 1).

Рис. 1. Квадрат

Вспомним важные элементы окружности:

Дуга ;

Угол  – центральный угол;

Точка О – центр окружности.

Имеем дугу и соответствующий центральный угол (рис. 2).

Рис. 2. Элементы окружности

Понятие градусной меры дуги

Рассмотрим понятие градусной меры дуги.

Задана окружность с центром О. Дуга ALB не больше полуокружности; дуга AМB больше полуокружности.

Градусной мерой дуги ALB называется градусная мера соответствующего центрального угла – .

Для дуги, большей полуокружности, градусной мерой будет следующая разность:

 (рис. 3).

Рис. 3. Градусная мера дуги

Две дуги  и  вместе составляют целую окружность, запишем это:

Таким образом, градусная мера окружности – это .

Решение примеров

Задана окружность с центром О, диаметром АВ, радиусом, перпендикулярным диаметру, ОС, радиусом ОМ, который составляет с ОС угол .

Дуга  – пол-окружности;

Дуга  – четверть окружности, угол  прямой;

Дуга ;

Дуга  состоит из двух дуг, ее градусная мера равна сумме градусных мер двух дуг: ;

Дуга  больше полуокружности, значит, ее градусная мера – это разность: .

Рис. 4. Иллюстрация к примерам

Каждая дуга стягивается своей хордой, во многих задачах требуется найти длину этой хорды.

Пример:

Радиус окружности с центром О – 16 см. Найдите хорду АВ, если:

а)

б)

в)

Решение:

Итак, в случае а . Треугольник  равнобедренный, стороны ОА и ОВ равны как радиусы окружности. Углы при основании равны и сумма их равна , значит, на каждый из углов приходится , таким образом, в треугольнике  все углы составляют , а значит, этот треугольник равносторонний и сторона АВ равна также радиусу окружности, то есть 16 см (рис. 5).

Рис. 5. Иллюстрация к случаю а

В случае б центральный угол  составляет . Рассмотрим прямоугольный равнобедренный треугольник  и применим теорему Пифагора, чтобы найти его гипотенузу: . Нашли  см (рис. 6).

Рис. 6. Иллюстрация к случаю б

В случае в , значит, в данном случае АВ является диаметром окружности. Мы знаем, что диаметр равен двум радиусам, радиус нам известен. Таким образом,  см (рис. 7).

Рис. 7. Иллюстрация к случаю в

Выводы по уроку

Итак, мы узнали, что такое центральный угол, познакомились с понятием градусной меры дуги окружности. На следующем уроке мы изучим вписанный угол и теорему о нем.

 

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Uztest.ru (Источник).
  2. Raal100.narod.ru (Источник).
  3. Uztest.ru (Источник).

 

Домашнее задание

  1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др., Геометрия 7–9, № 649, № 651, № 652, с. 73.