Классы
Предметы

Поворот. Задачи

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Поворот. Задачи

Это занятие будет посвящено теме «Поворот». Мы решим несколько задач на упомянутую тему, но для начала повторим понятие движения. После чего рассмотрим один из видов движения – поворот, перечислим его свойства и особенности. Решим вместе с преподавателем задачи на эту тему.

Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур»

Тема: Движение

Урок: Поворот как разновидность движения

 

1. Введение

Движение – отображение плоскости на себя, при котором расстояния между точками плоскости сохраняются.

Примеры движения: осевая симметрия, центральная симметрия, параллельный перенос.

Свойства движения: отрезок переходит в отрезок, угол переходит в равный ему угол, окружность переходит в окружность того же радиуса и т. п.

 

 

 

 

 

 

  

Рис. 1.

Пусть имеется некоторая выделенная точка О плоскости. Кроме того, рассмотрим произвольную точку М той же плоскости. Поворотом (обозначение – ) относительно точки О, называемой центром поворота на Ðα (угол поворота) называется такое отображение плоскости на себя, при котором любая точка М плоскости переходит в такую точку М1 той же плоскости, что ОМ = ОМ1 и, кроме того,  ÐМОМ1 = α (Рис. 1).

Докажем, что поворот является движением.

Доказательство (Рис. 2).

 

 

 

 

 

 

 

Рис. 2.

Рассмотрим точки М и N плоскости, переходящие при повороте соответственно в точки М1 и N1 той же плоскости.

Рассмотрим треугольники ОМN и ОМ1N1. В этих треугольниках ОМ = ОМ1 и ОN = ОN1.                     ÐМОN = α – ÐМОN1; ÐМ1ОN1 = α – ÐМОN1, следовательно, ÐМОN = ÐМ1ОN1. Таким образом, указанные треугольники равны по двум сторонам и углу между ними. Отсюда вытекает равенство отрезков МN = М1N1. Поскольку точки М и N  выбирались нами произвольно, можно утверждать, что при повороте длины отрезков сохраняются.

Теорема доказана.

Нам необходимо научиться использовать рассмотренный тип движения.

Задача (аналогичная № 1167 из учебника Атанасян, см. список литературы)

Постройте треугольник, который получается из данного треугольника ABC поворотом вокруг точки А на угол 60° против часовой стрелки ( ∆АВС).

Решение (Рис. 3).

 

 

 

 

 

 

 

 

 

Рис. 3.

При повороте точка А перейдет в саму себя. Точки В и С перейдут в точки В1 и С1 соответственно. Углы треугольника и длины его сторон, в соответствии с общими свойствами движения, сохранятся (все обозначения сторон и углов даны на Рис. 3).

Построения при повороте крайне простые: при помощи циркуля построить дугу окружности радиусом, равным длине стороны треугольника (АС или АВ), с центром в точке А, далее при помощи транспортира отложить на дуге угол 60° и отметить точку-образ (В1 или С1). Соединив полученные точки-образы отрезками, можно получить искомый треугольник А1В1С1, являющийся образом треугольника АВС (∆АВС = ∆А1В1С1).

Задача (Атанасян, № 1168).

Точка О является точкой пересечения биссектрис равностороннего треугольника ABC. Докажите, что при повороте вокруг точки О на угол 120° треугольник ABC отображается на себя.

Решение.

Сделаем рисунок (Рис. 4).

 

 

 

 

 

 

 

Рис. 4.

Точка О пересечения биссектрис правильного треугольника является центром этого треугольника. Следовательно, вершины треугольника при повороте вокруг точки О будут «отрисовывать» дуги окружности, описанной около ∆АВС. Легко показать, что ÐВОС = ÐСОА = ÐАОВ = 120°. Следовательно, при повороте , точка А перейдет в точку В, точка В перейдет в точку С и точка С  перейдет в точку А (напомним, что угол поворота считается положительным, если поворот происходит против часовой стрелки). Таким образом, ∆АВС = ∆АВС .

Задача решена.

Задача. Дана прямая, на которой заданы точка О1  и точка О2  и даны точки А и В, лежащие по разные стороны от этой прямой. Причем имеют место равенства расстояний: О1А = О1В, О2А = О2В.

Доказать, что точки А и В симметричны относительно указанной прямой.

Решение (Рис. 5).

Рис. 5.

Для доказательства требуемого в задаче утверждения нам необходимо доказать, что АМ = МВ и АВ^ О1О2 .

Построим окружность радиусом О1А с центром в точке О1 и окружность радиусом О2А с центром в точке О2.

Рассмотрим некоторую осевую симметрию с осью О1О2. При таком отображении полуокружности, расположенные в верхней полуплоскости, перейдут в соответствующие полуокружности, расположенные в нижней полуплоскости относительно оси симметрии. При этом точка пересечения «верхних» полуокружностей – точка А – перейдет в точку пересечения «нижних» полуокружностей – точку В. То есть точка В симметрична точке А относительно рассматриваемой прямой. Задача решена.

В заключение разберем еще один простое применение понятий симметрии.

Дан параллелограмм ABCD.

Доказать, что точка пересечения его диагоналей является его центром симметрии.

Напоминание: фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Рис. 6.

Решение (Рис. 6).

На рисунке точка О –  точка пересечения диагоналей параллелограмма. В силу свойств параллелограмма AО = ОC и BО = ОD, а также любой отрезок, концы которого лежат на противоположных сторонах и проходящий через точку О (например, отрезок MN на Рис. 6), делится в этой точке пополам. Это означает, что при осуществлении центральной симметрии относительно центра, расположенного в точке О, все точки, принадлежащие сторонам, перейдут в точки, также принадлежащие сторонам. Таким образом, параллелограмм перейдет сам в себя, т. е. точка О – центр симметрии.

Подведем итоги: на данном уроке мы ввели в рассмотрение новый вид отображения плоскости на себя – поворот, доказали, что он является движением и решили ряд задач, которые помогут лучше понять изучаемую тему.

 

Список рекомендованной литературы

1. Атанасян Л. С. и др. Геометрия 7–9 классы. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2010.

2. Фарков А. В. Тесты по геометрии: 9 класс. К учебнику Л. С. Атанасяна и др. – М.: Экзамен, 2010.

3. Погорелов А. В. Геометрия, уч. для 7–11 кл. общеобр. учрежд. – М.: Просвещение, 1995.

 

Рекомендованные ссылки на интернет-ресурсы

1. Российский общеобразовательный портал (Источник).

2. Фестиваль педагогических идей «Открытый урок» (Источник).

 

Рекомендованное домашнее задание

1. Атанасян (см. список литературы), стр. 293, § 1, пункты 116, 117.