Классы
Предметы

Графики равноускоренного движения

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Графики равноускоренного движения

На прошлом уроке мы изучили основные законы и зависимости равноускоренного движения. На этом уроке мы научимся строить графики равноускоренного движения – это графики зависимости проекции скорости от времени, графики зависимости проекции перемещения от времени, графики зависимости координаты от времени, и анализировать эти графики. Также решим несколько типовых задач по этой теме.

График зависимости проекции скорости от времени

Зависимость проекции скорости от времени является линейной, так как описывается следующим законом:

 

Из курса математики нам известно похожее уравнение:

 

Это уравнение прямой, следовательно, график зависимости проекции скорости от времени также будет иметь вид прямой. Нарисуем эту прямую на координатной сетке (рис. 1). Для этого выбираем произвольное значение  и строим произвольную прямую.

Рис. 1. График зависимости проекции скорости от времени

Проанализируем полученный график.

Видно, что скорость тела возрастала и в какой-то момент времени  была равна . Это говорит о том, что проекция ускорения .

Рассмотрим прямоугольный треугольник (выделенный красным цветом). Длина катета 1 в этом треугольнике равна  , а длина катета 2 равна . С помощью этих катетов найдем тангенс угла , то есть тангенс угла наклона построенной прямой:

 

Нам известно, что отношение изменения скорости ко времени, за которое оно произошло – это ускорение, следовательно:

 

Проанализируем график  на рисунке 2.

Рис. 2. График зависимости проекции скорости от времени

Видно, что скорость тела не менялась и всегда оставалась равной , следовательно, проекция ускорения этого тела равно нулю . Такое движение является равномерным.

Проанализируем график  на рисунке 3.

Рис. 3. График зависимости проекции скорости от времени

Видно, что проекция ускорения имеет знак минус . До момента времени  модуль скорости уменьшался (тело тормозило), а далее модуль скорости увеличивался (тело разгонялось в противоположную сторону), следовательно, момент времени  – это точка поворота (рис. 4).

Рис. 4. Точка поворота

Задача 1

На рисунке 5 представлен график зависимости проекции скорости от времени для движущегося тела. По данному рисунку запишите эту зависимость аналитически.

Рис. 5. Иллюстрация к задаче

Решение

Зависимость является прямой, то есть тело двигалось равноускоренно. Зависимость скорости от времени при равноускоренном движении выглядит следующим образом:

 

Для того чтобы записать эту зависимость для данного тела, необходимо найти проекцию начальной скорости  и проекцию ускорения .

Начальная скорость – это скорость в начальный момент времени, то есть при . На данном графике видно, что начальная скорость равна  (цена одного деления на оси проекции скорости ).

Формула для нахождения проекции ускорения:

 

Начальная скорость  нам известна, а  определим в произвольный момент времени. В данном случае удобно определить скорость  в точке пересечения прямой с осью времени. Скорость в этой точке равна нулю . Время, за которое скорость изменилась с  до  определим по графику. Это время равно  (цена одного деления на оси времени ).

Подставляем полученные данные в формулу проекции ускорения:

 

Подставляем значение проекции начальной скорости и ускорения в закон изменения проекции скорости со временем:

 

Ответ:.

График зависимости проекции перемещения от времени

Зависимость проекции перемещения от времени имеет следующий вид:

 

Множитель t в этой зависимости стоит как в первой степени, так и во второй. С точки зрения математики такая зависимость называется квадратичной, а график ее – парабола.

 


Рис. 6. Графики зависимости проекции перемещения от времени

На рисунке 6 изображены параболы.

Ветви параболы 1 направлены вверх, следовательно, коэффициент , то есть проекция ускорения положительная .

Для параболы 2 проекция ускорения также будет положительной . До момента времени  тело двигалось в противоположную выбранной оси сторону;  – точка поворота.

Ветви параболы 3 направлены вниз, следовательно, проекция ускорения меньше нуля .  – точка поворота.

График зависимости координаты от времени

Зависимость координаты от времени имеет следующий вид:

 

Данная зависимость отличается от уравнения зависимости проекции перемещения от времени только слагаемым . Поэтому график  также будет иметь вид параболы, которая сдвинута по оси ординат на величину начальной координаты () (рис. 7).

Рис. 7. Сдвиг графика

Рис. 8. Графики зависимости координаты от времени

На рисунке 8 изображены графики зависимости координаты от времени.

Парабола 1 имеет отрицательную начальную координату. Ветви этой параболы направлены вверх, следовательно, проекция ускорения будет больше нуля, .

У параболы 2 начальная координата больше нуля. Ветви этой параболы направлены вниз, следовательно, проекция ускорения будет меньше нуля, .

Модуль проекции ускорения будет больше во втором случае, так как координата (x) менялась быстрее.

 

Задача 2

На рисунке 9 представлен график зависимости  для равноускоренно движущегося тела. Известно, что начальная координата тела составляла . По этим данным запишите аналитически зависимость ,  и , а также постройте график зависимости .

Рис. 9. Иллюстрация к задаче

Решение

1. Общий вид закона :

 

На графике видно, что проекция начальной скорости равна:

 

Формула для нахождения проекции ускорения:

 

В данном случае удобно определить скорость  в точке пересечения прямой с осью времени. Скорость в этой точке равна нулю . Время, за которое скорость изменилась от начального значения до значения , определим по графику. Это время равно .

 

Подставляем значение проекции начальной скорости и ускорения в уравнение :

 

2. Общий вид закона :

 

Значение проекции начальной скорости и ускорения нам известны, поэтому подставляем их в уравнение:

 

 

3. Общий вид закона :

 

Значение проекции начальной скорости и ускорения, а также начальной координаты нам известны, поэтому подставляем их в уравнение:

 

 

4. По имеющейся зависимости  построим график.

Для того чтобы построить график параболы, необходимо определить координаты вершины.

Координаты вершины  параболы  находятся по формулам:

;

Тогда,  

Ординату вершины найдем, подставив значение абсциссы () в уравнение зависимости :

 

Также необходимо найти точки пересечения параболы с осями.

Из условия известна начальная координата. То есть при , . Вторую точку найдем, подставив 0 вместо  в уравнение зависимости координаты от времени.

 

При решении данного квадратного уравнения получаем два корня  и . Нам подходит положительный корень , так как мы считаем, что тело начало двигаться в момент времени .  – момент времени за 2 с до начала наблюдения.

Следовательно, вторая точка имеет абсциссу , ординату .

По известным точкам строим параболу. Ветви данной параболы направлены вверх, так как в уравнении перед  стоит знак плюс (рис. 10).

Рис. 10. Иллюстрация к задаче

Список литературы

  1. М.М. Балашов, А.И. Гомонова, А.Б. Долицкий. Физика: механика. 10. – М.: Дрофа, 2004.
  2. А.П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  3. В.А. Касьянов. Физика 10 кл. – М.: Дрофа, 2000
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «ru.solverbook.com» (Источник)
  2. Интернет-портал «msk.edu.ua» (Источник)
  3. Интернет-портал «festival.1september.ru» (Источник)

 

Домашнее задание

  1. Задача 57, 58 (стр. 15) – А.П. Рымкевич. Физика. Задачник 10-11
  2. Нарисуйте график зависимости координаты от времени для прямолинейного движения, удовлетворяющего одновременно двум условиям: а) средняя скорость в промежутке времени от 2 до 6 с равна 5 м/с; б) максимальная скорость в том же промежутке равна 15 м/с.
  3. По графикам зависимости проекции скорости от времени (рис. 11) определите для каждого тела:

а) проекцию начальной скорости;

б) проекцию скорости через 2 с;

в) проекцию ускорения;

г) уравнение проекции скорости;

д) когда проекция скорости тел будет равна 6 м/с.

Рис. 11. Иллюстрация к задаче