Классы
Предметы

Применение сил Ампера и Лоренца в науке и технике. Амперметр, телеграф, электромагниты, масс-анализаторы

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Применение сил Ампера и Лоренца в науке и технике. Амперметр, телеграф, электромагниты, масс-анализаторы

Почему одних ученых история вносит на свои страницы золотыми буквами, а некоторых стирает бесследно? Каждый пришедший в науку обязан оставить в ней свой след. Именно по величине и глубине этого следа судит история. Так, Ампер и Лоренц внесли неоценимый вклад в развитие физики, что дало возможность не только развивать научные теории, но получило весомую практическую ценность. Как появился телеграф? Что такое электромагниты? На все эти вопросы даст ответ сегодняшний урок.

Введение

Для науки представляют огромную ценность полученные знания, которые впоследствии могут найти свое практическое применение. Новые открытия не только расширяют исследовательские горизонты, но и ставят новые вопросы, проблемы.

Взаимодействие проводников с током

Выделим основные открытия Ампера в области электромагнетизма.

Во-первых, это взаимодействия проводников с током. Два параллельных проводника с токами притягиваются друг к другу, если токи в них сонаправлены, и отталкиваются, если токи в них противонаправлены (рис. 1).

Рис. 1. Проводники с током

Закон Ампера гласит:

Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

– сила взаимодействия двух параллельных проводников,

– величины токов в проводниках,

 − длина проводников,

 – расстояние между проводниками,

 – магнитная постоянная.

Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесенного через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а именно количество заряда, переносимое через поперечное сечение проводника. На основании этого определения мы не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путем: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока – 1 А (1 ампер).

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенных в вакууме на расстоянии один метрот друга взаимодействуют с силой  Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой, прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

Закон действия магнитного поля на проводник с током

Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля. Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.

 – сила тока,

 – момент сил, разворачивающих виток с током.

Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре (рис. 2).

Рис. 2. Амперметр

Электродвигатель

После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.

Рис. 3. Двигатель

Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока в цепь с вольтметром, то при замыкании цепи рамка с током начнет вращение.

Рис. 4. Принцип работы электродвигателя

Электромагниты

В 1269 г. французский естествоиспытатель Пьер де Марикур написал труд под названием «Письмо о магните». Основной целью Пьера де Марикура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки, неизвестно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось ее разогнать до скорости 4,5 км/ч.

Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать электромагнит – устройство, мощность которого можно регулировать (рис. 5).

Рис. 5. Электромагнит

Телеграф

Именно Амперу пришла идея о том, что, скомбинировав проводники и магнитные стрелки, можно создать устройство, которое предает информацию на расстояние.

Рис. 6. Электрический телеграф

Идея телеграфа (рис. 6) возникла в первые же месяцы после открытия электромагнетизма.

Однако широкое распространение электромагнитный телеграф приобрел после того, как Самюэль Морзе создал более удобный аппарат и, главное, разработал двоичную азбуку, состоящую из точек и тире, которая так и называется: азбука Морзе.

С передающего телеграфного аппарата с помощью «ключа Морзе», который замыкает электрическую цепь, в линии связи формируются короткие или длинные электрические сигналы, соответствующие точкам или тире азбуки Морзе. На приемном телеграфном аппарате (пишущий прибор) на время прохождения сигнала (электрического тока) электромагнит притягивает якорь, с которым жестко связано пишущее металлическое колесико или писец, которые оставляют чернильный след на бумажной ленте (рис. 7).

Рис. 7. Схема работы телеграфа

Пушка Гаусса

Математик Гаусс, когда познакомился с исследованиями Ампера, предложил создать оригинальную пушку (рис. 8), работающую на принципе действия магнитного поля на железный шарик – снаряд.

Рис. 8. Пушка Гаусса

Необходимо обратить внимание на то, в какую историческую эпоху были сделаны эти открытия. В первой половине XIX века Европа семимильными шагами шла по пути промышленной революции – это было благодатное время для научно-исследовательских открытий и быстрого внедрения их в практику. Ампер, несомненно, внес весомый вклад в этот процесс, дав цивилизации электромагниты, электродвигатели и телеграф, которые до сих пор находят широкое применение.

Открытия Лоренца

Выделим основные открытия Лоренца.

Лоренц установил, что магнитное поле действует на движущуюся в нем частицу, заставляя ее двигаться по дуге окружности:

Cила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику, как отношение заряда к массе – удельный заряд.

Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь то электрон, протон или любая другая частица. Таким образом, ученые получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия – и бета-частицы – электроны.

В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. Магнитное поле искривляет траектории частиц (рис. 9). Направление изгиба следа позволяет судить о знаке заряда частицы; измерив радиус траектории, можно определить скорость частицы, если известны ее масса и заряд.

Рис. 9. Искривление траектории частиц в магнитном поле

На этом принципе разработан Большой адронный коллайдер (рис. 10). Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

Рис. 10. Большой адронный коллайдер

Для того чтобы охарактеризовать влияние ученого на технический прогресс, вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, ее скорости и заряда. Таким образом, получаем возможность классифицировать заряженные частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках, и остается только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряженных частиц. Именно по такой схеме работает масс-анализатор (рис. 11)Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

Рис. 11. Масс-анализатор

Это еще не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью ученых и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

 

Список литературы

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. – М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. – М.: Мнемозина.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «Чип и Дип» (Источник).
  2. Интернет-портал «Киевская городская библиотека» (Источник).
  3. Интернет-портал «Институт дистанционного образования» (Источник).

 

Домашнее задание

1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с.: ил., 8 л. цв. вкл., ст. 88, в. 1-5.

2. В камере Вильсона, которая размещена в однородном магнитном поле с индукцией 1,5 Тл, альфа-частица, влетая перпендикулярно к линиям индукции, оставляет след в виде дуги окружности радиусом 2,7 см. Определите импульс и кинетическую энергию частицы. Масса альфа-частицы 6,7∙10-27 кг, а заряд 3,2∙10-19 Кл.

3. Масс-спектрограф. Пучок ионов, разогнанных разницей потенциалов 4 кВ, влетает в однородное магнитное поле с магнитной индукцией 80 мТл перпендикулярно линиям магнитной индукции. Пучок состоит из ионов двух типов с молекулярными массами 0,02 кг/моль и 0,022 кг/моль. Все ионы обладают зарядом 1,6 ∙ 10-19 Кл. Ионы вылетают из поля двумя пучками (рис. 5). Найти расстояние между пучками ионов, которые вылетают.

 

Рис. 5 

4. *С помощью электродвигателя постоянного тока поднимают груз на тросе. Если отключить электродвигатель от источника напряжения и замкнуть ротор накоротко, груз будет опускаться с постоянной скоростью. Объясните это явление. В какую форму переходит потенциальная энергия груза?