Классы
Предметы

Величины, характеризующие колебательное движение

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Величины, характеризующие колебательное движение

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Величины, характеризующие колебательное движение». На этом уроке вы узнаете, как и какими величинами характеризуются колебательные движения. Будет дано определение таких величин, как амплитуда и смещение, период и частота колебания.

Амплитуда

Обсудим количественные характеристики колебаний. Начнем с самой очевидной характеристики – амплитуды. Амплитуда обозначается большой буквой А и измеряется в метрах.

Определение

Амплитудой называют максимальное смещение от положения равновесия.

Часто амплитуду путают с размахом колебаний. Размах – это когда тело совершает колебание из одной крайней точки в другую. А амплитуда – это максимальное смещение, т. е. расстояние от точки равновесия, от линии равновесия до крайней точки, в которую оно попало. Помимо амплитуды, существует еще одна характеристика – смещение. Это текущее отклонение от положения равновесия.

А – амплитуда –

х – смещение –

Рис. 1. Амплитуда

Посмотрим, как отличаются амплитуда и смещение на примере. Математический маятник находится в состоянии равновесия. Линия расположения маятника в начальный момент времени – линия равновесия. Если отвести маятник в сторону – это и будет его максимальное смещение (амплитуда). В любой другой момент времени расстояние не будет амплитудой, а будет просто смещением.

Рис. 2. Отличие амплитуды и смещения

Период

Следующая характеристика, к которой мы переходим, называется период колебаний.

Определение

Периодом колебаний называется промежуток времени, в течение которого совершается одно полное колебание.

Обратите внимание, что величина «период» обозначается большой буквой , определяется она следующим образом: , .

Рис. 3. Период

Стоит добавить, что чем больше мы берем число колебаний за большее время, тем точнее мы определим период колебаний.

Частота

Следующая величина – это частота.

Определение

Число колебаний, совершенных за единицу времени, называют частотой колебаний.

Рис. 4. Частота

Обозначается частота греческой буквой , которая читается как «ню». Частота – это отношение числа колебаний ко времени, за которое эти колебания произошли: .

Единицы измерения частоты . Эту единицу называют «герц» в честь немецкого физика Генриха Герца. Обратите внимание, что период и частота связаны через число колебаний и время, в течение которых это колебание совершается. Для каждой колебательной системы частота и период есть величины постоянные. Связь между этими величинами довольно проста: .

Кроме понятия «частота колебаний» нередко пользуются понятием «циклическая частота колебаний», то есть количество колебаний за  секунд. Обозначается она буквой  и измеряется в радианах за секунду .


Графики свободных незатухающих колебаний

Мы уже знаем решение главной задачи механики для свободных колебаний – закон синуса или косинуса. Также мы знаем, что графики являются мощнейшим инструментом исследования физических процессов. Поговорим о том, как будут выглядеть графики синусоиды и косинусоиды в применении к гармоническим колебаниям.

Для начала определимся с особыми точками во время колебаний. Это необходимо для того, чтобы правильно выбрать масштаб построения. Рассмотрим математический маятник. Первый вопрос, который возникает: какую функцию использовать – синус или косинус? Если колебание начинается с верхней точки – максимального отклонения, законом движения будет закон косинуса. Если же начать движение с точки равновесия – законом движения будет закон синуса.

Если законом движения будет закон косинуса, то через четверть периода маятник будет находиться в положении равновесия, еще через четверть – в крайней точке, еще через четверть – опять в положении равновесия, и еще через одну четверть вернется в начальное положение.

Если маятник колеблется по закону синуса, то через четверть периода он будет находиться в крайней точке, еще через четверть – в положении равновесия. Потом опять в крайней точке, но с другой стороны, и через еще четверть периода вернется в положение равновесия.

Итак, масштабом времени будет не произвольные значение 5 с, 10 с и т. д., а доли периода. Мы будем строить график по четвертям долей периода.

Что же сказать о координате ? Дальше, чем положение равновесия, маятник не двигается. График будет ограничен значением амплитуды.

Перейдем к построению.  меняется либо по закону синуса, либо по закону косинуса. Ось ординат – , ось абсцисс – . Масштаб времени равен четвертям периода:  График будет лежать в пределах от  до .

Рис. 5. Графики зависимости

График для колебания по закону синуса выходит из нуля и обозначен темно-синим цветом (рис. 5). График для колебания по закону косинуса выходит из положения максимального отклонения и обозначен голубым цветом на рисунке. Графики выглядят абсолютно идентично, но сдвинуты по фазе относительно друг друга на четверть периода или  радиан.

Аналогичный вид будут иметь графики зависимости  и , ведь они тоже меняются по гармоническому закону.



Особенности колебаний математического маятника

Математический маятник – это материальная точка массой , подвешенная на длинной нерастяжимой невесомой нити длиной .

Обратите внимание на формулу периода колебаний математического маятника: , где  – длина маятника,  – ускорение свободного падения.

Чем больше длина маятника, тем больше период его колебаний (рис. 6). Чем длиннее нить, тем дольше маятник раскачивается.

Рис. 6 Зависимость периода колебаний от длины маятника

Чем больше ускорение свободного падения, тем меньше период колебаний (рис. 7). Чем больше ускорение свободного падения, тем сильнее небесное тело притягивает грузик и тем быстрее он стремится вернуться в положение равновесия.

Рис. 7 Зависимость периода колебаний от ускорения свободного падения

Обратите внимание, что период колебаний не зависит от массы груза и амплитуды колебаний (рис. 8).

Рис. 8. Период колебаний не зависит от амплитуды колебаний

Первым на этот факт обратил внимание Галилео Галилей. На основании этого факта предложен механизм маятниковых часов.

Следует отметить, что точность формулы  максимальна лишь для малых, сравнительно небольших отклонений. Например, для отклонения  погрешность формулы составляет . Для более крупных отклонений точность формулы не столь велика.

Рассмотрим качественные задачи, которые описывают математический маятник.

Задача. Как изменится ход маятниковых часов, если их: 1) перевезти из Москвы на Северный полюс; 2) перевезти из Москвы на экватор; 3) поднять высоко в гору; 4) вынести из нагретого помещения на мороз.

Для того чтобы правильно ответить на вопрос задачи, необходимо понять, что имеется в виду под «ходом маятниковых часов». Маятниковые часы основаны на математическом маятнике. Если период колебаний часов будет меньше, чем нам нужно, часы начнут спешить. Если же период колебаний станет больше, чем необходимо, часы будут отставать. Задача сводится к ответу на вопрос: что произойдет с периодом колебаний математического маятника в результате всех перечисленных в задаче действий?

Рассмотрим первую ситуацию. Математический маятник переносится из Москвы на Северный полюс. Вспоминаем, что Земля имеет форму геоида, то есть сплюснутого у полюсов шара (рис. 9). Это значит, что на полюсе величина ускорения свободного падения несколько больше, чем в Москве. А раз ускорение свободного падения больше, то период колебаний станет несколько меньше и маятниковые часы начнут спешить. Здесь мы пренебрегаем тем, что на Северном полюсе холоднее.

Рис. 9. Ускорение свободного падения больше на полюсах Земли

Рассмотрим вторую ситуацию. Переносим часы из Москвы на экватор, предполагая, что температура не меняется. Ускорение свободного падения на экваторе несколько меньше, чем в Москве. Это значит, что период колебаний математического маятника увеличится и часы начнут отставать.

В третьем случае часы поднимают высоко в гору, тем самым увеличивая расстояние до центра Земли (рис. 10). Это значит, что ускорение свободного падения на вершине горы меньше. Период колебаний увеличивается, часы будут отставать.

Рис. 10 Ускорение свободного падения больше на вершине горы

Рассмотрим последний случай. Часы выносят из теплой комнаты на мороз. При понижении температуры линейные размеры тел уменьшаются. Это значит, что длина маятника немного сократится. Раз длина стала меньше, то период колебаний также уменьшился. Часы будут спешить.

Мы рассмотрели самые типичные ситуации, которые позволяют разобраться с тем, как работает формула периода колебаний математического маятника.

Фаза колебаний

В заключение рассмотрим еще одну характеристику колебаний – фазу. О том, что такое фаза, более подробно мы будем говорить в старших классах. Сегодня мы должны рассмотреть, с чем можно эту характеристику сравнить, сопоставить и как ее для себя определить. Удобнее всего фазу колебаний сопоставить со скоростью движения маятника.

Рис. 11. Маятники колеблются синфазно (с одинаковыми фазами)

На рисунке 11 представлены два одинаковых маятника. Первый маятник отклонили влево на определенный угол, второй тоже отклонили влево на определенный угол, такой же, как и первый. Оба маятника будут совершать абсолютно одинаковые колебания. В этом случае можно сказать, что маятники совершают колебания с одинаковой фазой, поскольку скорости маятника имеют одно направление и равные модули.

Рис. 12. Маятники совершают колебания в противофазе

На рисунке 12 два таких же маятника, но один отклонен влево, а другой – вправо. У них тоже одинаковые по модулю скорости, но направление противоположное. В этом случае говорят, что маятники совершают колебания в противофазе.

Во всех других случаях, как правило, упоминают о разности фаз.

Рис. 13 Разница фаз

Фазу колебаний в произвольный момент времени можно рассчитать по формуле , то есть как произведение циклической частоты на время, прошедшее с начала колебаний. Измеряется фаза в радианах.


Особенности колебаний пружинного маятника

Формула колебаний пружинного маятника: . Таким образом, период колебаний пружинного маятника зависит от массы груза и жесткости пружины.

Чем больше масса груза, тем больше его инертность. То есть маятник будет медленнее разгоняться, период его колебаний будет больше (рис. 14).

Рис. 14 Зависимость периода колебаний от массы

Чем больше жесткость пружины, тем быстрее она стремится вернуться в положение равновесия. Период пружинного маятника будет меньше.

Рис. 15 Зависимость периода колебаний от жесткости пружины

Рассмотрим применение формулы  на примере задачи.

Задача. На рисунке представлен график зависимости координаты от времени для пружинного маятника. Найдите массу грузика, если жесткость пружины равна .

Рис. 16 График зависимости координаты от времени для пружинного маятника

Решение:

Массу грузика можно определить из формулы периода колебаний пружинного маятника:

Период колебаний  находим, используя график зависимости координаты от времени. Период – это время одного полного колебания. Одно полное колебание совершается за  (рис. 17).

Рис. 17 Период колебаний

Если подставить теперь все необходимые значения в формулу для вычисления массы, получим:

Ответ: масса грузика составляет приблизительно 10 г.

Так же, как и в случае с математическим маятником, для пружинного маятника период колебаний не зависит от его амплитуды. Естественно, что это справедливо только для небольших отклонений от положения равновесия, когда деформация пружины является упругой. Этот факт был положен в основу устройства пружинных часов (рис. 18).

Рис. 18 Пружинные часы


Заключение

Конечно, кроме колебаний и тех характеристик, о которых мы говорили, существуют и другие не менее важные характеристики колебательного движения. Но о них мы поговорим в старшей школе.

 

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. – 1983. – № 9. – С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  3. Черноуцан А.И. Гармонические колебания – обычные и удивительные  // Квант. – 1991. – № 9. – С. 36-38.
  4. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300 с.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «abitura.com» (Источник)
  2. Интернет-портал «phys-portal.ru» (Источник)
  3. Интернет-портал «fizmat.by» (Источник)

 

Домашнее задание

  1. Что такое математический и пружинный маятники? Какая разница между ними?
  2. Что такое гармоническое колебание, период колебания?
  3. Груз массой 200 г колеблется на пружине с жесткостью 200 Н/м. Найдите полную механическую энергию колебаний и наибольшую скорость движения груза, если амплитуда колебаний 10 см (трением пренебречь).