Классы
Предметы
Мой профиль

Определение координаты движущегося тела

На данном уроке, тема которого: «Определение координаты движущегося тела» мы поговорим о том, как можно определять место нахождения тела, его координату. Поговорим о системах отсчета, рассмотрим для примера задачу, а также вспомним, что такое перемещение

Введение

Представьте: вы изо всей силы бросили мяч. Как определить, где он будет находиться через две секунды? Можно подождать две секунды и просто посмотреть, где он. Но, даже не глядя, вы приблизительно можете предсказать, где будет мяч: бросок был сильнее обычного, направлен под большим углом к горизонту, значит, полетит высоко, но недалеко… Используя законы физики, можно будет точно определить положение нашего мяча.

Определить положение движущегося тела в любой момент времени – это и есть основная задача кинематики.

Система отсчета

Начнем с того, что у нас есть тело: как определить его положение, как объяснить кому-то, где оно находится? Об автомобиле мы скажем: он на дороге за 150 метров перед светофором или на 100 метров за перекрестком (см. рис. 1).

Определение местоположения машины

Рис. 1. Определение местоположения машины

Или на трассе за 30 км к югу от Москвы. О телефоне на столе скажем: он сантиметров на 30 правее клавиатуры или рядом с дальним углом стола (см. рис. 2).

Положение телефона на столе

Рис. 2. Положение телефона на столе

Заметьте: мы не сможем определить положение автомобиля, не упомянув другие объекты, не привязавшись к ним: светофор, город, клавиатуру. Мы определяем положение, или координаты, всегда относительно чего-то.

Координаты – это набор данных, по которому определяется положение того или иного объекта, его адрес.

Примеры упорядоченных и неупорядоченных имен

Координата тела – это его адрес, по которому мы его можем найти. Он упорядоченный. Например, зная ряд и место, мы точно определяем, где находится наше место в зале кинотеатра (см. рис. 3).

Зал кинотеатра

Рис. 3. Зал кинотеатра

Буквой и цифрой, например e2, точно задается положение фигуры на шахматной доске (см. рис. 4).

Положение фигуры на доске

Рис. 4. Положение фигуры на доске

Зная адрес дома, например улица Солнечная 14, мы будем искать его на этой улице, на четной стороне, между домами 12 и 16 (см. рис. 5).

Поиск дома

Рис. 5. Поиск дома

Названия улиц не упорядочены, мы не будем искать Солнечную улицу по алфавиту между улицами Розовой и Тургенева. Также не упорядочены номера телефонов, номерные знаки автомобилей (см. рис. 6).

Неупорядоченные имена

Рис. 6. Неупорядоченные имена

Эти номера, идущие подряд, – это лишь совпадение, не означающее соседства.

Мы можем задать положение тела в разных системах координат, как нам удобно. Для того же автомобиля, можно задать точные географические координаты (широту и долготу) (см. рис. 7).

Долгота и широта местности

Рис. 7. Долгота и широта местности

Можно выбрать любую точку в городе и считать, сколько километров нужно проехать на юг и сколько на восток, чтобы найти автомобиль (см. рис. 8).

Местоположение относительно точки

Рис. 8. Местоположение относительно точки

Причем если мы выберем разные такие точки, то получим разные координаты, хотя они будут задавать положение одного и того же автомобиля.

Итак, положение тела относительно разных тел в разных системах координат будет разным. А что такое движение? Движение – это изменение положения тела со временем. Поэтому описывать движение мы будем в разных системах отсчета по-разному, и нет смысла рассматривать движение тела без системы отсчета.

Например, как движется стакан с чаем на столе в поезде, если сам поезд едет? Смотря относительно чего. Относительно стола или пассажира, сидящего рядом на сидении, стакан покоится (см. рис. 9).

Движение стакана относительно пассажира

Рис. 9. Движение стакана относительно пассажира

Относительно дерева около железной дороги стакан движется вместе с поездом (см. рис. 10).

Движение стакана вместе с поездом относительно дерева

Рис. 10. Движение стакана вместе с поездом относительно дерева

Относительно земной оси стакан и поезд вместе со всеми точками земной поверхности будут еще и двигаться по окружности (см. рис. 11).

Движение стакана с вращением Земли относительно земной оси

Рис. 11. Движение стакана с вращением Земли относительно земной оси

Поэтому нет смысла говорить о движении вообще, движение рассматривается в привязке к системе отсчета.

Наблюдение и вычисление

Всё, что мы знаем о движении тела, можно разделить на наблюдаемое и вычисляемое. Вспомним пример с мячом, который мы бросили. Наблюдаемое – это его положение в выбранной системе координат, когда мы его только бросаем (см. рис. 12).

Наблюдение

Рис. 12. Наблюдение

Это момент времени, когда мы его бросили; время, которое прошло после броска. Пусть на мяче нет спидометра, который показал бы скорость мяча, но ее модуль, как и направление, тоже можно узнать, используя, например, замедленную съемку.

С помощью наблюдаемых данных мы можем предсказать, например, что мяч через 5 секунд упадет за 20 м от места броска или через 3 секунды попадет в верхушку дерева. Положение мяча в любой момент времени – это в нашем случае вычисляемые данные.

Что определяет каждое новое положение движущегося тела? Его определяет перемещение, потому что перемещение – это вектор, характеризующий изменение положения. Если начало вектора совместить с начальным положением тела, то конец вектора укажет на новое положение переместившегося тела (см. рис. 13).

Вектор перемещения

Рис. 13. Вектор перемещения

Нахождение координаты тела по перемещению

Рассмотрим несколько примеров на определение координаты движущегося тела по его перемещению.

Пусть тело двигалось прямолинейно из точки 1 в точку 2. Построим вектор перемещения и обозначим его  (см. рис. 14).

Перемещение тела

Рис. 14. Перемещение тела

Тело двигалось вдоль одной прямой, значит, нам будет достаточно одной оси координат, направленной вдоль перемещения тела. Допустим, мы наблюдаем за движением со стороны, совместим начало отсчета с наблюдателем.

Перемещение – вектор, удобнее работать с проекциями векторов на оси координат (у нас она одна).  – проекция вектора  (см. рис. 15).

Проекция вектора

Рис. 15. Проекция вектора

Как определить координату начальной точки, точки 1? Опускаем перпендикуляр из точки 1 на ось координат. Этот перпендикуляр пересечет ось и отметит на оси координату точки 1. Так же определяем координату точки 2 (см. рис. 16).

Опускаем перпендикуляры на ось ОХ

Рис. 16. Опускаем перпендикуляры на ось ОХ

Проекция перемещения равна:

При таком направлении оси и перемещения  будет по модулю равна самому перемещению .

Зная начальную координату и перемещение, найти конечную координату тела – дело математики:

Уравнение

Уравнение – это равенство, содержащее неизвестный член. В чем его смысл?

Любая задача заключается в том, что что-то нам известно, а что-то – нет, и неизвестное нужно найти. Например, тело из некоторой точки переместилось на 6 м в направлении оси координат и оказалось в точке с координатой 9 (см. рис. 17).

Начальное положение точки

Рис. 17. Начальное положение точки

Как найти, из какой точки тело начало движение?

У нас есть закономерность: проекция перемещения – это разность конечной и начальной координат:

Смысл уравнения будет в том, что перемещение и конечную координату мы знаем () и можем подставить эти значения, а начальную координату не знаем, она будет неизвестным в этом уравнении:

И уже решая уравнение, мы получим ответ: начальная координата .

Перемещение и направление оси не совпадают по направлению

Рассмотрим другой случай: перемещение направлено в сторону, противоположную направлению оси координат.

Координаты начальной и конечной точек определяются так же, как и раньше, – опускаются перпендикуляры на ось (см. рис. 18).

Ось направлена в другую сторону

Рис. 18. Ось направлена в другую сторону

Проекция перемещения (ничего не меняется) равна:

Обратите внимание, что  больше, чем , и проекция перемещения , когда она направлена против оси координат, будет отрицательной.

Конечная координата тела из уравнения для проекции перемещения равна:

Как видим, ничего не меняется: в проекции на ось координат конечное положение равно начальному положению плюс проекция перемещения. В зависимости от того, в какую сторону тело переместилось, проекция перемещения будет положительной или отрицательной в данной системе координат.

Перемещение и ось координат находятся под углом друг к другу

Рассмотрим случай, когда перемещение и ось координат направлены под углом друг к другу. Теперь одной оси координат нам недостаточно, нужна вторая ось (см. рис. 19).

Ось направлена в другую сторону

Рис. 19. Ось направлена в другую сторону

Теперь перемещение будет иметь ненулевую проекцию на каждую ось координат. Эти проекции перемещения будут определяться, как и раньше:

Заметьте, модуль каждой из проекций в этом случае меньше модуля перемещения. Модуль перемещения можем легко найти, используя теорему Пифагора. Видно, что если построить прямоугольный треугольник (см. рис. 20), то его катеты будут равны  и , а гипотенуза равна модулю перемещения  или, как часто записывают, просто .

Треугольник Пифагора

Рис. 20. Треугольник Пифагора

Тогда по теореме Пифагора запишем:

Задача

Автомобиль находится в 4 км к востоку от гаража. Воспользуйтесь одной осью координат, направленной на восток, с началом отсчета в гараже. Укажите координату автомобиля в заданной системе через 3 минуты, если автомобиль этим временем ехал со скоростью 0,5 км/мин на запад.

В задаче ничего не сказано о том, что автомобиль поворачивал или изменял скорость, поэтому считаем движение равномерным прямолинейным.

Изобразим систему координат: начало координат у гаража, ось х направлена на восток (см. рис. 21).

Направление оси Ох

Рис. 21. Направление оси Ох

Автомобиль изначально был в точке  и двигался по условию задачи на запад (см. рис. 22).

Движение автомобиля на запад

Рис. 22. Движение автомобиля на запад

Проекция перемещения, как мы неоднократно писали, равна:

Мы знаем, что автомобиль проезжал по 0,5 км каждую минуту, значит, чтобы найти суммарное перемещение, нужно скорость умножить на количество минут :

На этом физика закончилась, осталось математически выразить искомую координату. Выразим ее из первого уравнения:

Подставим перемещение:

Осталось подставить числа и получить ответ. Не забывайте, что автомобиль двигался на запад против направления оси х, это значит, что проекция скорости отрицательна: .

Задача решена.

Итоги

Главное, чем мы сегодня пользовались для определения координаты, – выражение для проекции перемещения:

И из него мы уже выражали координату:

При этом сама проекция перемещения может быть задана, может вычисляться как , как в было в задаче о равномерном прямолинейном движении, может вычисляться сложнее, что нам еще предстоит изучить, но в любом случае координату движущегося тела (где тело оказалось) можно определить по начальной координате (где тело было) и по проекции перемещения (куда переместилось).

На этом наш урок окончен, до свидания!

 

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В., Гутник Е.М. Физика: 9 класс. Учебник для общеобразовательных учреждений. – 14-е изд. – М.: Дрофа, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Class-fizika.narod.ru (Источник).
  2. Av-physics.narod.ru (Источник).
  3. Class-fizika.narod.ru (Источник).

 

Домашнее задание

  1. Что такое перемещение, путь, траектория?
  2. Как можно определить координаты тела?
  3. Запишите формулу для определения проекции перемещения.
  4. Как будет определяться модуль перемещения, если перемещение имеет проекции на две оси координат?