Классы
Предметы

Перемещение при прямолинейном равноускоренном движении

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Перемещение при прямолинейном равноускоренном движении

Данный видеоурок поможет пользователям получить представление о теме «Перемещение при прямолинейном равноускоренном движении». В ходе этого занятия учащиеся смогут расширить свои знания о прямолинейном равноускоренном движении. Учитель расскажет, как правильно определять перемещение, координаты и скорость при таком движении.

Введение

На предыдущих уроках мы обсуждали, как определить пройденный путь при равномерном прямолинейном движении. Настало время узнать, как определить координату тела, пройденный путь и перемещение при прямолинейном равноускоренном движении. Это можно сделать, если рассмотреть прямолинейное равноускоренное движение как набор большого количества очень малых равномерных перемещений тела.

Опыт Галилея

Первым решил задачу местоположения тела в определенный момент времени при ускоренном движении итальянский ученый Галилео Галилей (рис. 1).

Рис. 1. Галилео Галилей (1564–1642)

Свои опыты он проводил с наклонной плоскостью. По желобу он запускал шар, мушкетную пулю, а затем определял ускорение этого тела. Как же он это делал? Он знал длину наклонной плоскости, а время определял по биению своего сердца или по пульсу (рис. 2).

Рис. 2. Опыт Галилея

Определение перемещения по графику скорости

Рассмотрим график зависимости скорости равноускоренного прямолинейного движения от времени. Эта зависимость вам известна, она представляет собой прямую линию: .

Рис. 3. Определение перемещения при равноускоренном прямолинейном движении

График скорости разбиваем на маленькие прямоугольные участки (рис. 3). Каждый участок будет соответствовать определенной скорости, которую можно считать постоянной в данный промежуток времени. Надо определить пройденный путь за первый промежуток времени. Запишем формулу: . Теперь посчитаем суммарную площадь всех имеющихся у нас фигур.

Сумма площадей при равномерном движении – это полный пройденный путь.

Обратите внимание: от точки к точке скорость будет изменяться, тем самым мы получим путь, пройденный телом именно при прямолинейном равноускоренном движении.

Заметим, что при прямолинейном равноускоренном движении тела, когда скорость и ускорение направлены в одну сторону (рис. 4), модуль перемещения равен пройденному пути, поэтому, когда мы определяем модуль перемещения – определяем пройденный путь. В данном случае можем говорить, что модуль перемещения будет равен площади фигуры, ограниченной графиком скорости и времени.

Рис. 4. Модуль перемещения равен пройденному пути

Воспользуемся математическими формулами для вычисления площади указанной фигуры.

Рис. 5 Иллюстрация для вычисления площади

 – площадь фигуры (численно равная пройденному пути), равна полусумме оснований, умноженной на высоту. Обратите внимание, что на рисунке одним из оснований является начальная скорость, а вторым основанием трапеции будет конечная скорость, обозначенная буквой . Высота трапеции равна , это промежуток времени, за который произошло движение.

Конечную скорость, рассмотренную на предыдущем уроке, мы можем записать как сумму начальной скорости и вклада, обусловленного наличием у тела постоянного ускорения. Получается выражение:

Если раскрыть скобки, то  становится удвоенным. Мы можем записать следующее выражение:

Если по отдельности записать каждое из этих выражений, итогом будет следующее:

Это уравнение впервые было получено благодаря экспериментам Галилео Галилея. Поэтому можно считать, что именно этот ученый впервые дал возможность определить местоположение тела при прямолинейном равноускоренном движении в любой момент времени. Это и есть решение главной задачи механики.

Определение координаты тела

Теперь давайте вспомним, что пройденный путь, равный в нашем случае модулю перемещения, выражается разностью:

Если это выражение подставить в уравнение Галилея , то получим закон, по которому меняется координата тела при прямолинейном равноускоренном движении:

Следует помнить, что величины  – это проекции скорости и ускорения на выбранную ось. Поэтому они могут быть как положительными, так и отрицательными.

Заключение

Следующим этапом рассмотрения движения станет исследование движения по криволинейной траектории.

 

Список литературы

  1.  Кикоин И.К., Кикоин А.К. Физика: учебник для 9 класса средней школы. – М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А. В. Перышкин, Е. М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300.
  3. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «class-fizika.narod.ru» (Источник)
  2. Интернет-портал «videouroki.net» (Источник)
  3. Интернет-портал «foxford.ru» (Источник)

 

Домашнее задание

  1. Запишите формулу, по которой определяется проекция вектора перемещения тела при прямолинейном равноускоренном движении.
  2. Велосипедист, начальная скорость которого 15 км/ч, съехал с горки за 5 с. Определите длину горки, если велосипедист двигался с постоянным ускорением 0,5 м/с^2.
  3. Чем отличаются зависимости перемещения от времени при равномерном и равноускоренном движениях?