Классы
Предметы

Решение уравнений

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Решение уравнений

На данном уроке подробно рассмотрены способы решения уравнений. Объяснены способы решения уравнений, как методом подбора, так и с учетом взаимосвязи компонентов действий сложения и вычитания.

Введение понятия «уравнение»

Определим, что такое «уравнение».

Правильный ответ: уравнение – это математическое равенство, которое содержит неизвестное число. Неизвестное число обозначают буквами латинского алфавита.

Найдем среди данных записей уравнения.

48 - 25 = 23

30 + х > 40

36 - х = 12

х + 5

Рассуждаем так:

первая запись – это равенство, но в нем отсутствуют буквы латинского алфавита, значит, она не является уравнением;

вторая запись – это неравенство, поэтому не соответствует определению уравнения;

третья запись – это математическое равенство, которое содержит неизвестное число, обозначенное буквой латинского алфавита, значит, является уравнением;

четвертая запись не является равенством, значит, это не уравнение.

Введение понятия «корень уравнения»

Что значит «решить уравнение»?

Правильный ответ: решить уравнение – значит найти такое числовое значение неизвестного, при котором равенство будет верным.

В математике говорят: решить уравнение – это значит найти корень уравнения.

Решение уравнение способом подбора

Выполним задание.

Из чисел 2, 5, 8, 11 выберем для каждого уравнения такое значение х, при котором получится верное равенство.

18 - х =10

2 + х = 7

х - 9 = 2

х + 8 = 10

Рассуждаем так.

В первое уравнение 18-х =10 подставим первое число 2. Получаем: 18-2=10. Это равенство нельзя назвать верным. Значит, число 2 не является корнем данного уравнения. Подставим в это уравнение число 5. Получаем: 18-5=10. Это равенство также нельзя назвать верным. Значит, число 5 тоже не является корнем данного уравнения. Подставим в это уравнение число 8. Получаем: 18-8=10. Это равенство можно назвать верным. Значит, число 8 является корнем данного уравнения.

Продолжаем рассуждать. В уравнение 2 + х = 7 подставим первое число 2. Получаем: 2+2=7. Это равенство нельзя назвать верным. Значит, число 2 не является корнем данного уравнения. Подставим в это уравнение число 5. Получаем: 2+5=7. Это равенство можно назвать верным. Значит, число 5 является корнем данного уравнения.

Тренируемся далее. В уравнение х-9=2 подставим первое число 2. Получаем:

2-9=2, но 2 меньше, чем 9, поэтому вычитание мы выполнить не сможем. Нужно попробовать подставить в уравнение число, которое больше, чем 9. подставим число 11. Получаем: 11-9=2. Это равенство можно назвать верным. Значит, число 11 является корнем данного уравнения.

Найдем корень последнего уравнения. Подставим число 2 в уравнение х+8=10. Получаем: 2+8=10. Это равенство можно назвать верным. Значит, число 2 является корнем данного уравнения.

Сделаем вывод.

Данные уравнения мы решали способом подбора. Это способ не всегда бывает удобным. Уравнения можно решать и другим способом, но для этого нужно знать, как связаны между собой компоненты действий при сложении и вычитании.

Решение уравнений на основе знаний связи компонентов действий сложения и вычитания

Проверим себя. Как найти неизвестные компоненты?

Правильный ответ:

а) чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

б) чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть значение разности.

в) чтобы найти неизвестное уменьшаемое, надо к значению разности прибавить вычитаемое.

Обратим внимание: если мы умеем находить слагаемые, уменьшаемое и вычитаемое, можно решать уравнения другим способом.

Решим уравнения с объяснением.

64 + d = 82

b - 36 = 40

82 - k = 5

Рассуждаем так. В уравнении 64 + d =82 выполняется сложение. В уравнении известно первое слагаемое – 64 и значение суммы – 82. Неизвестно второе слагаемое. Вспомним правило: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое. Запишем.

64+d =82

d=82-64

d=18

Корень уравнения – 18. Проверим: 64+18=64+10+8=82. 82=82. Это верное равенство. Делаем вывод: если равенство верное, значит, уравнение решено правильно.

В уравнении b - 36 = 40 выполняется вычитание. В уравнении известно вычитаемое – 36 и значение разности – 40. Неизвестно уменьшаемое. Вспомним правило: чтобы найти неизвестное уменьшаемое, надо к значению разности прибавить вычитаемое. Запишем.

b-36=40

b=40+36

b=76

Корень уравнения – 76. Проверим: 76-36=76-30-6=40. 40=40. Это верное равенство. Делаем вывод: если равенство верное, значит, уравнение решено правильно.

В уравнении 82 - k = 5 выполняется вычитание. В уравнении известно уменьшаемое – 82 и значение разности – 5. Неизвестно вычитаемое. Вспомним правило: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть значение разности. Запишем.

82-k=5

k=82-5

k=77

Корень уравнения – 77. Проверим: 82-77=82-70-7=5. 5=5. Это верное равенство. Делаем вывод: если равенство верное, значит, уравнение решено правильно

Решение уравнений, соответствующих предложенной схеме

Потренируемся.

Выберем уравнения, которые соответствуют схеме, и найдем числовое значение х (рис. 1).

Рис. 1. Иллюстрация к заданию

Будем рассуждать. На данной схеме мы видим целое – 16, части – 2 и х.

Попробуем подобрать уравнение.

Рассмотрим уравнение х-2=16. В этом уравнении х – уменьшаемое, то есть самое большое число. Но на схеме самое большое число – 16, значит, это уравнение для данной схемы не подходит.

Рассмотрим второе уравнение 2+х=16. Видим, что 2 – это первое слагаемое, х – второе слагаемое. Из двух слагаемых получается целое – 16. Делаем вывод: данное уравнение к схеме подходит.

Решим его, найдем корень уравнения. Неизвестно второе слагаемое. Вспомним правило: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое. Запишем.

2+х=16

х=16-2

х=14

Рассмотрим третье уравнение 16-х=2. На схеме видим, что уменьшаемое 16 – это целое, х – вычитаемое (одна часть), 2 – значение разности (вторая часть). Делаем вывод: данное уравнение к схеме подходит.

Решим его, найдем корень уравнения. Вспомним правило: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть значение разности. Запишем.

16-х=2

х=16-2

х=14

Сегодня на уроке мы решали уравнения способом подбора и на основе знания связи компонентов действий при сложении и вычитании.

 

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. – М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. – М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. – М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. – М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. – М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. – М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. – М.: «Экзамен», 2012.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Nsportal.ru (Источник).
  2. Prosv.ru (Источник).
  3. Do.gendocs.ru (Источник).

 

Домашнее задание

1. Дано предложение: «Число 26 уменьшили на несколько единиц и получили 17». Выбери запись этого предложения уравнением.

17 +х = 26

26 – х =17

х - 26 = 17

2. Реши уравнения способом подбора

7+х=15

20-х=4

х-2=28

3. Реши уравнения, объясни ход решения.

50 – х = 38

23 + х = 38

х – 5 = 38