Классы
Предметы

Решение задач на встречное движение

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Решение задач на встречное движение

На этом уроке мы рассмотрим решение задач на встречное движение. Вначале вспомним понятие средней скорости, то, как связаны скорость, время и расстояние. Далее решим три задачи на нахождение каждой из величин, по условиям которых объекты будут двигаться навстречу друг другу. Познакомимся с понятием «скорость сближения».

Вступление

Вы уже знакомы с понятием «средняя скорость» и знаете, как связаны величины скорость, время и расстояние. Решим более сложные задачи.

Задача 1 (1 способ)

Два лыжника вышли одновременно навстречу друг другу из двух поселков и встретились через 3 часа. Первый лыжник шел со средней скоростью 12 км/ч, второй – 14 км/ч. Найдите расстояние между поселками. Смотрите иллюстрацию на рисунке 1.

Рис. 1. Иллюстрация к задаче 1

Решение

1 способ

Чтобы найти расстояние между поселками, нам нужно знать, какое расстояние прошел каждый лыжник. Чтобы найти расстояние, которое прошел лыжник, надо знать его среднюю скорость движения и время, которое он был в пути.

Мы знаем, что лыжники вышли навстречу друг другу одновременно и были в пути 3 часа. Значит, каждый лыжник был в пути три часа.

Средняя скорость одного лыжника 12 км/ч, время в пути 3 часа. Если скорость множить на время, то узнаем, какое расстояние прошел первый лыжник:

1.       (км)

Средняя скорость движения второго лыжника – 14 км/ч, время в пути такое же, как и у первого лыжника – три часа. Чтобы узнать, какое расстояние прошел второй лыжник, умножим его среднюю скорость на его время в пути:

2.       (км)

Теперь можем найти расстояние между поселками.

3.       (км)

Ответ: расстояние между поселками – 78 км.

Задача 1 (2 способ)

За первый час один лыжник прошел 12 км, за этот же час второй лыжник прошел навстречу первому лыжнику 14 км. Можем найти скорость сближения:

1.       (км/ч)

Мы знаем, что за каждый час лыжники приближались друг к другу на 26 км. Тогда можем найти, на какое расстояние они приблизились за 3 часа.

2.       (км)

Умножив скорость сближения на время, мы узнали, какое расстояние прошли два лыжника, то есть узнали расстояние между поселками.

Ответ: расстояние между поселками 78 км.

Задача 2

Из двух поселков, расстояние между которыми – 78 км, вышли одновременно навстречу друг другу два лыжника. Первый лыжник шел со средней скоростью 12 км/ч, а второй – 14 км/ч. Через сколько часов они встретились? (Смотри рисунок 2).

Рис. 2. Иллюстрация к задаче 2

Чтобы найти время, через которое встретятся лыжники, надо знать расстояние, которое прошли лыжники, и скорость обоих лыжников.

Мы знаем, что каждый час первый лыжник приближался к месту встречи на 12 км, а второй лыжник приближался к месту встречи на 14 км. То есть вместе они приближались за каждый час на:

1.  (км/ч)

Мы нашли скорость сближения лыжников.

Мы знаем все расстояние, которое прошли лыжники, и знаем скорость сближения. Если расстояние разделить на скорость, то мы получим время, через которое встретились лыжники.

2.  (ч)

Ответ: лыжники встретились через 3 часа.

Задача 3

Из двух поселков, расстояние между которыми – 78 км, вышли одновременно навстречу друг другу два лыжника и встретились через 3 часа. Первый лыжник шел со средней скоростью 12 км/ч. С какой средней скоростью шел второй лыжник? (Смотри рисунок 3.)

Рис. 3. Иллюстрация к задаче 3

Решение

Чтобы узнать среднюю скорость движения второго лыжника, надо узнать, какое расстояние прошел лыжник до места встречи и какое время он был в пути. Чтобы узнать, какое расстояние до места встречи прошел второй лыжник, надо знать, какое расстояние прошел первый лыжник, и общее расстояние. Общее расстояние, которое прошли оба лыжника, мы знаем – 78 км. Чтобы найти расстояние, которое прошел первый лыжник, надо знать его среднюю скорость движения и время, которое он был в пути. Средняя скорость движения первого лыжника – 12 км/ч, в пути он был три часа. Если скорость умножить на время, мы получим расстояние, которое прошел первый лыжник.

1.   (км)

Мы знаем общее расстояние, 78 км, и расстояние, которое прошел первый лыжник – 36 км. Можем найти какое расстояние прошел второй лыжник.

2.    (км)

Мы теперь знаем, какое расстояние прошел второй лыжник, и знаем, какое время он был в пути – 3 часа. Если расстояние, которое прошел второй лыжник, разделить на время, которое он был в пути, получим его среднюю скорость.

3.   (км/ч)

Ответ: средняя скорость движения второго лыжника – 14 км/ч.

Заключение

Мы сегодня учились решать задачи на встречное движение. 

 

Список литературы

  1. Математика. Учебник для 4 кл. нач. шк. В 2 ч./М.И. Моро, М.А. Бантова. – М.: Просвещение, 2010. 
  2. Демидова Т.Е., Козлова С.А., Тонких А.П. Математика. 4 класс. Учебник в 3 ч. 2-е изд., испр. – М.: 2013.; Ч. 1 – 96 с., Ч. 2 – 96 с., Ч. 3 – 96 с. 
  3. Математика: учеб. для 4-го кл. общеобразоват. учреждений с рус. яз. обучения. В 2 ч. Ч. 2 / Т.М. Чеботаревская, В.Л. Дрозд, А.А. Столяр; пер. с бел. яз. Л.А. Бондаревой. – 3-е изд., перераб. – Минск: Нар. асвета, 2008. – 135 с.: ил. 

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет 

  1. Uchit.rastu.ru (Источник).
  2. For6cl.uznateshe.ru (Источник).
  3. Volna.org (Источник).

 

Домашнее задание 

  1. Попробуйте решить задачу № 3 другим способом. 
  2. Расстояние между двумя велосипедистами – 240 м. Они выехали одновременно навстречу друг другу и встретились через 30 сек. Какова скорость первого велосипедиста, если скорость второго равна 3 м/с? 
  3. Навстречу друг другу из двух сел, расстояние между которыми – 30 км, одновременно вышли два пешехода. Один шел со скоростью 4 км/ч, а другой – со скоростью 5 км/ч. На сколько километров они сблизятся за 1 час пути? А за три часа?