Классы
Предметы

Сравнение обыкновенных дробей

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Сравнение обыкновенных дробей

В ходе урока мы вспомним, что такое обыкновенные дроби. Научимся сравнивать дроби с одинаковыми знаменателями, определять большую или меньшую дробь, если у них одинаковые числители, а также сравнивать даже те дроби, у которых не совпадает ни числитель, ни знаменатель.

Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Десятичные дроби и проценты».

Определение обыкновенной дроби

Обыкновенная дробь – это число вида , где  и  – это натуральные числа ().  – это числитель, а  – это знаменатель дроби и .

Каждый может за версту.
Видеть дробную черту.
Над чертой – числитель, знайте,
Под чертою – знаменатель.
Дробь такую, непременно,
Надо звать обыкновенной.

Примеры обыкновенных дробей

Знаменатель обозначает, на сколько частей что-то разделили. А числитель – сколько таких частей взяли. Например, возьмем шесть шариков. Мы можем разбить их на две равные группы из трех шариков и взять одну (рис. 1). Такое действие можно записать дробью: .

Рис. 1. Иллюстрация к примеру (Источник)

Если эти шарики мы разобьем на три группы и возьмем одну (рис. 2), получим .

Рис. 2. Иллюстрация к примеру

Кроме того, шарики можно разделить на шесть равных частей (рис. 3) и взять три. Так получится  или .

Рис. 3. Иллюстрация к примеру

Для того чтобы взять, например,  частей, необходимо поставить еще одну такую же часть (рис. 4).

Рис. 4. Иллюстрация к примеру

Задание № 1

Сравните: 1. и ; 2.  и .

Решение: 1. Дробь  означает, что взяли, например, отрезок и разделили его на пять равных частей, из которых взяли только две (рис. 5).

Рис. 5. Иллюстрация к заданию 1

А дробь  означает, что отрезок разделили на пять равных частей, а взяли четыре части (рис. 6).

Рис. 6. Иллюстрация к заданию 1

Теперь посмотрим, где получилось больше. Там, где взяли четыре части. Следовательно: 

2. И в первой, и во второй дроби, что-то разбили на тринадцать частей, но в первой дроби взяли только восемь таких частей, а во второй – десять. Следовательно: 

Правило сравнения дробей с одинаковыми знаменателями

Если у дробей равные знаменатели, то больше та дробь, у которой числитель больше. Если , то , .

Задание № 2

Сравните дроби: 1.  и ; 2.  и .

Решение: 1. В первой дроби отрезок разделили на пять частей и взяли три (рис. 7). А во второй отрезок разделили на восемь частей и взяли тоже три, но каждая часть получилась меньше, чем в предыдущем случае (рис. 8).

  

Рис. 7. Иллюстрация к заданию 2

Рис. 8. Иллюстрация к заданию 2

Получается: 

2. При сравнении видно, что одна двенадцатая часть больше одной тринадцатой, следовательно, если мы возьмем по семь таких частей, соотношение не изменится:

Правило сравнения дробей с одинаковыми числителями

Если у дробей равные числители, то больше та дробь, у которой знаменатель меньше. Если , то , .

Общий случай

Что делать, если в дроби ни числитель, ни знаменатель не равны? Тогда необходимо воспользоваться основным свойством дроби: если числитель и знаменатель умножить на одно и то же число (не равное 0), то дробь останется неизменной.

Например, необходимо сравнить такие дроби: 1.  и ; 2.  и ; 3. и .

Решение: 1. Приведем две дроби к общему знаменателю. У пяти и у десяти общий знаменатель – десять. Необходимо числитель и знаменатель дроби  домножить на 2.

Тогда сравниваем дроби и видим, что они равны.

2. Общий знаменатель – 24.

Теперь сравниваем дроби с равными знаменателями:

3. В данном случае необходимо две дроби привести к одинаковому знаменателю. Поэтому числитель и знаменатель первой дроби умножим на 5, а второй – на 3.

Теперь, сравнивая дроби с одинаковыми знаменателями, большей будет та, у которой числитель больше:

Правило

Чтобы сравнить две дроби, надо привести их к общему знаменателю, а потом сравнить числители. Больше будет та дробь, у которой числитель больше.

Итог

1. При сравнении дробей с одинаковыми знаменателями большая та, у которой числитель больше.

2. При сравнении дробей с одинаковыми числителями большая та, у которой знаменатель меньше.

3. В общем случае, чтобы сравнить две дроби, надо привести их к общему знаменателю и потом сравнить числители.

 

Список литературы

1. Математика. 5 класс. Учеб. для общеобразоват. учреждений / [Н.Я. Виленкин и др.] – 24-е изд., испр. – М.: Мнемозина, 2008. – 280 с.

2. Зубарева И.И., Мордкович А. Г. Математика, 5 класс. – М.: Мнемозина.

3. Истомина Н.Б., Математика, 5 класс. – М.: Ассоциация ХХI век.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт znanija.com (Источник)

2. Интернет-сайт math-prosto.ru (Источник)

3. Интернет-сайт cleverstudents.ru (Источник)

 

Домашнее задание

1. Математика. 5 класс. Учеб. для общеобразоват. учреждений / [Н.Я. Виленкин и др.] – 24-е изд., испр. – М.: Мнемозина, 2008., стр. 138 § 23, № 884; ст. 146 § 24, № 945.

2. Что такое обыкновенная дробь?

3. Назовите правило сравнения дробей с одинаковыми знаменателями. Назовите правило сравнения дробей с одинаковыми числителями.

4. * Сравните дроби:

а)  и            

б)  и 

в) 1 и 

г)  и