Классы
Предметы

Магнитное поле постояннoго электрического тока

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Магнитное поле постояннoго электрического тока

На данном уроке, тема которого: «Магнитное поле постоянного электрического тока», мы узнаем, что такое магнит, как он взаимодействует с другими магнитами, запишем определения магнитного поля и вектора магнитной индукции, а также воспользуемся правилом буравчика для определения направления вектора магнитной индукции.

Введение

Каждый из вас держал в руках магнит и знает его удивительное свойство: он на расстоянии взаимодействует с другим магнитом или с куском железа. Что есть такого в магните, что придает ему эти удивительные свойства? Можно ли самому сделать магнит? Можно, и что для этого нужно – вы узнаете из нашего урока. Забежим наперед: если взять простой железный гвоздь, он не будет обладать магнитными свойствами, но, если обмотать его проволокой и подключить ее к батарейке, мы получим магнит (см. рис. 1).

Рис. 1. Гвоздь, обмотанный проволокой и подключенный к батарейке

Оказывается, чтобы получить магнит, нужен электрический ток – движение электрического заряда. С движением электрического заряда связаны и свойства постоянных магнитов, таких как магнитики на холодильнике. Некого магнитного заряда, подобно электрическому, в природе не существует. Он и не нужен, достаточно движущихся электрических зарядов.

Магнитное поле, вектор магнитной индукции, правило буравчика

Прежде чем исследовать магнитное поле постоянного электрического тока, нужно договориться, как количественно описывать магнитное поле. Для количественного описания магнитных явлений необходимо ввести силовую характеристику магнитного поля. Векторная величина, количественно характеризующая магнитное поле, называется магнитной индукцией. Обозначается она обычно большой латинской буквой B, измеряется в тесла.

Магнитная индукции  – векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Направление магнитного поля определяется по аналогии с моделью электростатики, в которой поле характеризуется действием на пробный покоящийся заряд. Только здесь в качестве «пробного элемента» используется магнитная стрелка (продолговатый постоянный магнит). Такую стрелку вы видели в компасе. За направление магнитного поля в какой-либо точке принято направление, которое укажет северный полюс N магнитной стрелки после переориентации (см. рис. 2).

Рис. 2. Направление магнитного поля

Полную и наглядную картину магнитного поля можно получить, если построить так называемые силовые линии магнитного поля (см. рис. 3).

Рис. 3. Силовые линии магнитного поля постоянного магнита

Это линии, показывающие направление вектора магнитной индукции (то есть направления полюса N магнитной стрелки) в каждой точке пространства. С помощью магнитной стрелки, таким образом, можно получить картину силовых линии различных магнитных полей. Вот, например, картина силовых линий магнитного поля постоянного магнита (см. рис. 4).

Рис. 4. Силовые линии магнитного поля постоянного магнита

Магнитное поле существует в каждой точке, но линии мы изображаем на некотором расстоянии друг от друга. Это просто способ изображения магнитного поля, аналогично мы поступали с напряженностью электрического поля (см. рис. 5).

Рис. 5. Линии напряженности электрического поля

Чем более плотно нарисованы линии – тем больше модуль магнитной индукции в данной области пространства. Как видите (см. рис. 4), силовые линии выходят из северного полюса магнита и входят в южный полюс. Внутри магнита силовые линии поля также продолжаются. В отличие от силовых линий электрического поля, которые начинаются на положительных зарядах и заканчиваются на отрицательных, силовые линии магнитного поля замкнутые (см. рис. 6).

Рис. 6. Силовые линии магнитного поля замкнуты

Поле, силовые линии которого замкнуты, называется вихревым векторным полем. Электростатическое поле не является вихревым, оно потенциальное. Принципиальное различие вихревых и потенциальных полей в том, что работа потенциального поля на любом замкнутом пути равна нулю, для вихревого поля это не так. Земля тоже является огромным магнитом, она обладает магнитным полем, которое мы обнаруживаем с помощью стрелки компаса. Подробнее о магнитном поле Земли рассказано в ответвлении.

Наша планета Земля является большим магнитом, полюса которого находятся неподалеку от пересечения поверхности с осью вращения. Географически это Южный и Северный полюса. Именно поэтому стрелка в компасе, которая тоже является магнитом, взаимодействует с Землей. Она ориентируется таким образом, что один конец указывает на Северный полюс, а другой – на Южный (см. рис. 7).

Рис.7. Стрелка в компасе взаимодействует с Землей

Тот, который указывает на Северный полюс Земли, обозначили N, что означает North – в переводе с английского «Север». А тот, который указывает на Южный полюс Земли – S, что означает South – в переводе с английского «Юг». Так как притягиваются разноименные полюса магнитов, то северный полюс стрелки указывает на Южный магнитный полюс Земли (см. рис. 8).

Рис. 8. Взаимодействие компаса и магнитных полюсов Земли

Получается, что Южный магнитный полюс находится у Северного географического. И наоборот, Северный магнитный находится у Южного географического полюса Земли.

Теперь, познакомившись с моделью магнитного поля, исследуем поле проводника с постоянным током. Еще в XIX веке датский ученый Эрстед обнаружил, что магнитная стрелка взаимодействует с проводником, по которому течет электрический ток (см. рис. 9).

Рис. 9. Взаимодействие магнитной стрелки с проводником

Практика показывает, что в магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке будет устанавливаться по касательной к некоторой окружности. Плоскость этой окружности перпендикулярна проводнику с током, а ее центр лежит на оси проводника (см. рис. 10).

Рис. 10. Расположение магнитной стрелки в магнитном поле прямого проводника

Если изменить направление протекания тока по проводнику, то магнитная стрелка в каждой точке развернется в противоположную сторону (см. рис. 11).

Рис. 11. При изменении направления протекания электрического тока

То есть направление магнитного поля зависит от направления протекания тока по проводнику. Описать эту зависимость можно при помощи простого экспериментально установленного метода – правила буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения его ручки совпадает с направлением магнитного поля, создаваемого этим проводником (см. рис. 12).

Рис.12. Направление магнитного поля

Итак, магнитное поле проводника с током направлено в каждой точке по касательной к окружности, лежащей в плоскости, перпендикулярной проводнику. Центр окружности совпадает с осью проводника. Направление вектора магнитного поля в каждой точке связано с направлением тока в проводнике правилом буравчика. Опытным путем, при изменении силы тока и расстояния от проводника, установлено, что модуль вектора магнитной индукции пропорционален току  и обратно пропорционален расстоянию от проводника . Модуль вектора магнитной индукции поля, создаваемого бесконечным проводником с током, равен:

где  – коэффициент пропорциональности, который нередко встречается в магнетизме. Называется магнитной проницаемостью вакуума. Численно равен:

 

Для магнитных полей, как и для электрических, справедлив принцип суперпозиции. Магнитные поля, создаваемые разными источниками в одной точке пространства, складываются (см. рис. 13).

Рис. 13. Магнитные поля разных источников складываются

Суммарная силовая характеристика такого поля будет векторной суммой силовых характеристик полей каждого из источников. Величину магнитной индукции поля, создаваемого током в определенной точке, можно увеличить, если согнуть проводник в окружность. Это будет понятно, если рассмотреть магнитные поля небольших сегментов такого витка провода в точке, находящейся внутри этого витка. Например, в центре.

Сегмент, обозначенный , по правилу буравчика создает в ней поле, направленное вверх (см. рис. 14).

Рис. 14. Магнитное поле сегментов

Сегмент  аналогично создает в этой точке магнитное поле, направленное туда же. Аналогично и для других сегментов. Тогда суммарная силовая характеристика (то есть вектор магнитной индукции B) в этой точке будет суперпозицией силовых характеристик магнитных полей всех малых сегментов в этой и будет направлено вверх (см. рис. 15).

Рис. 15. Суммарная силовая характеристика в центре витка

Для произвольного витка, не обязательно в форме окружности, например для квадратной рамки (см. рис. 16), величина вектора  внутри витка будет, естественно, зависеть от формы, размеров витка и силы тока в нем, но направление вектора магнитной индукции всегда будет определяться таким же способом (как суперпозиция полей, создаваемых малыми сегментами).

Рис. 16. Магнитное поле сегментов квадратной рамки

Мы подробно описали определение направления поля внутри витка, но в общем случае его можно находить гораздо проще, по немного измененному правилу буравчика:

если вращать рукоятку буравчика в том направлении, куда течет ток в витке, то острие буравчика укажет направление вектора магнитной индукции внутри витка (см. рис. 17).

Рис. 17. Направление вектора магнитной индукции в витке

То есть теперь вращение рукоятки соответствует направлению тока, а перемещение буравчика – направлению поля. А не наоборот, как было в случае с прямым проводником. Если длинный проводник, по которому течет ток, свернуть в пружину, то это устройство будет представлять из себя множество витков. Магнитные поля каждого витка катушки по принципу суперпозиции будут складываться. Таким образом, поле, создаваемое катушкой в некоторой точке, будет суммой полей, создаваемых каждым из витков в этой точке. Картину силовых линий поля такой катушки вы видите на рис. 18.

Рис. 18. Силовые линии катушки

Такое устройство называется катушкой, соленоидом или электромагнитом. Нетрудно заметить, что магнитные свойства катушки будут такими же, как у постоянного магнита (см. рис. 19).

Рис. 19. Магнитные свойства катушки и постоянного магнита

Одна сторона катушки (которая на рисунке сверху) играет роль северного полюса магнита, а другая сторона – южного полюса. Такое устройство широко применяется в технике, потому что им можно управлять: оно становится магнитом только при включении тока в катушке. Обратите внимание, что линии магнитного поля внутри катушки почти параллельны, их плотность велика. Поле внутри соленоида очень сильное и однородное. Поле снаружи катушки неоднородно, оно намного слабее поля внутри и направлено в противоположную сторону. Направление магнитного поля внутри катушки определяется по правилу буравчика как для поля внутри одного витка. За направление вращения рукоятки мы принимаем направление тока, который течет по катушке, а перемещение буравчика указывает направление магнитного поля внутри нее (см. рис. 20).

Рис. 20. Правило буравчика для катушки

Если поместить виток с током в магнитное поле, он будет переориентироваться, подобно магнитной стрелке. Момент силы, вызывающий поворот, связан c модулем вектора магнитной индукции в данной точке, площадью витка и силой тока в нем следующим соотношением:

Теперь нам становится понятно, откуда берутся магнитные свойства постоянного магнита: электрон, движущийся в атоме по замкнутой траектории, подобен витку с током, и, как и виток, он обладает магнитным полем. А, как мы увидели на примере катушки, множество витков с током, упорядоченных определенным образом, обладают сильным магнитным полем.

Поле, создаваемое постоянными магнитами, – результат движения зарядов внутри них. И эти заряды – электроны в атомах (см. рис. 21).

Рис. 21. Движение электронов в атомах

Объясним механизм его возникновения на качественном уровне. Как известно, электроны в атоме находятся в движении. Так вот, каждый электрон, в каждом атоме создает свое магнитное поле, таким образом, получается огромное количество магнитов размером с атом. У большинства веществ эти магниты и их магнитные поля ориентированы хаотично. Поэтому суммарное магнитное поле, создаваемое телом, равно нулю. Но есть вещества, у которых магнитные поля, создаваемые отдельными электронами, ориентированы одинаково (см. рис. 22).

Рис. 22. Магнитные поля ориентированы одинаково

Поэтому магнитные поля, создаваемые каждым электроном, складываются. В итоге тело из такого вещества обладает магнитным полем и является постоянным магнитом. Во внешнем магнитном поле отдельные атомы или группы атомов, обладающие, как мы выяснили, собственным магнитным полем, поворачиваются как стрелка компаса (см. рис. 23).

Рис. 23. Поворачивание атомов во внешнем магнитном поле

Если они до этого не были ориентированы в одну сторону и не образовывали сильное суммарное магнитное поле, то после упорядочивания элементарных магнитов их магнитные поля сложатся. И если после действия внешнего поля упорядоченность сохранится, вещество останется магнитом. Описанный процесс называется намагничиванием.

Задания

Обозначьте полюса источника тока, питающего соленоид при указанном на рис. 24 взаимодействии. Порассуждаем: соленоид, в котором течет постоянный ток, ведет себя подобно магниту.

Рис. 24. Источник тока

По рис. 24 видно, что магнитная стрелка ориентирована южным полюсом в сторону соленоида. Одноименные полюса магнитов отталкиваются друг от друга, а разноименные притягиваются. Отсюда следует, что левый полюс самого соленоида – северный (см. рис. 25).

Рис. 25. Левый полюс соленоида северный

Линии магнитной индукции выходят из северного полюса и входят в южный. Значит, поле внутри соленоида направлено влево (см. рис. 26).

Рис. 26. Поле внутри соленоида направлено влево

Ну а направление поля внутри соленоида определяется по правилу буравчика. Мы знаем, что поле направлено влево – значит, представим, что буравчик вкручивается в этом направлении. Тогда его рукоятка будет указывать направление тока в соленоиде – справа налево (см. рис. 27).

Рис. 27. Направление тока в соленоиде

Направление тока определяется направлением перемещения положительного заряда. А положительный заряд перемещается от точки с большим потенциалом (положительный полюс источника) в точку с меньшим (отрицательный полюс источника). Следовательно, полюс источника, расположенный справа, – положительный, а слева – отрицательный (см. рис. 28).

Рис. 28. Определение полюсов источника

Задача 2

Рамка площадью 400  помещена в однородное магнитное поле индукцией 0,1 Тл так, что нормаль рамки перпендикулярна линиям индукции. При какой силе тока на рамку будет действовать вращающий момент 20  (см. рис. 29)?

Рис. 29. Рисунок к задаче 2

Порассуждаем: момент силы, вызывающий поворот, связан c модулем вектора магнитной индукции в данной точке, площадью витка и силой тока в нем следующим соотношением:

В нашем случае все необходимые данные имеются. Остается выразить искомую силу тока и рассчитать ответ:

Задача решена.

 

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – М.: Просвещение, 2010.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет портал «Гипермаркет знаний» (Источник)
  2. Интернет портал «Единая коллекция ЦОР» (Источник)

 

Домашнее задание

  1. Дайте определение вектора магнитной индукции.
  2. Каковы источники магнитного поля?
  3. Какую величину обозначают  и чему численно она равна?
  4. Каким правилом можно описать зависимость направления магнитного поля от направления протекания тока по проводнику?