Классы
Предметы

Звуковые волны. Источники звука. Характеристики звука (Иванова М.Г.)

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Звуковые волны. Источники звука. Характеристики звука  (Иванова М.Г.)

Данный видеоурок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

 

Физика 9 класс

Тема урока: Механика. Колебания и волны. Звуковые волны

Иванова М.Г.

учитель физики высшей категории ГОУ СОШ №54

Москва

2010

 

Продолжаем изучать механику. Мы находимся в главе 7, «Колебания и волны». Параграф 7, который сегодня посвящен звуковым волнам. Звуковые волны – это особые волны, которые вызывают колебания среды, которые воспринимаются нашим органом слуха – ухом. Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют слухачами, называют акустиками. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, у нас чередуются сжатие и разряжение. Передается она с течением времени на расстояние. К звуковым волнам относятся такие колебания, которые осуществляются с частотой 20 Гц и 20 тыс. Гц. Я написала, что этот диапазон будет называться слышимый звук. Этим длинам волн соответствует в той среде, о которой мы говорили, воздух при t = 20 °C соответствует 17 м длина волны и 20 тыс. Гц частота – 17 мм. Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. И ультразвуковые – это те, которые имеют частоту больше 20 тыс. Гц. Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 тыс. Гц. Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления. Значит, скорость звука зависит от условий среды и температуры. Я специально выписала эти важные расхождения, которые происходят с волной, если мы берем другую среду или увеличиваем температуру. Посмотрите, в воздухе скорость звука при t=0 °C V= 331 м/с, при t=1 °C скорость увеличивается на 1,7 с. Если вы – исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать или будет расхождения температуры мерить путем изменения скорости звука в среде. Я говорила: чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере воздуха сухого и воздуха влажного. Посмотрите, в воде скорость, для воды V = 1400 м/с. Звук, если мы его будем распространять (стучать по камертону, например, или по железке каким-нибудь предметом в воде и в воздухе), то скорость распространения увеличивается почти в 4 раза. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее, посмотрите, V = 5000 м/с = 5 км/с. Я, чтобы вы это запомнили, специально написала такой маячок – Илья Муромец. Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри, да и обычные русские люди и мальчики РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который идет далеко еще, приближается, но располагается еще далеко. Звук, который он издает при движении – поезд либо конница вражеская, еще не видно и не слышно этой конницы. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца и он сможет подготовиться к встрече неприятеля. Самые интересные звуковые волны – музыкальные звуки и немузыкальные шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться – звук музыкальный. Вы, знаете эти источники звуковых волн: например, струны у гитары или струны у рояля. Это, может быть, звуковая волна, которая создана в зазоре воздушном трубы (например, органа или трубы, духовых каких-нибудь инструментов). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. Называются в акустике тоны. Обозначаются такими буквами. Самое удивительное, что все предметы, которые могут издавать тоны, у всех них будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом. Хаотическая смесь звуков – это шум. Понятие шум есть бытовое, есть физическое, оно очень похоже, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические музыкальные колебания. Итак, громкость звука. Чем определяется громкость звука? Я здесь нарисовала распространение звуковой волны во времени или колебания источника звуковой волны. Он располагается здесь и начинает колебаться, при этом колеблется гармонически, вызывает музыкальный звук. При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по ноте фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукая по клавише, получим громкий звук. От чего это зависит? По-моему, всем понятно, что все будет зависеть от амплитуды колебания источника звука. У тихого звука амплитуда колебаний меньше, чем у громкого звука Ат < Агр.

Следующая важная характеристика музыкального звука и любого другого – высота. От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить не очень быстро колебаться, совершать за единицу времени меньшее количество колебаний. Посмотрите, как я это математически нарисовала на доске. Первый низкий звук колеблется таким образом. Здесь развертка во времени. Колебания происходят тут, можно заставить струну так колебаться. Мы будем колебания описывать таким образом. При этом то виртуальное, то, чего нету, а есть только в нашем сознании, развертка во времени, мы ее таким образом нарисовали.

У меня длина волны одной укладывается в такой промежуток времени. У второй волны я специально амплитуду сделала одинаковой, чтобы громкость звука была одинаковой. Окажется, что если мы умудримся за то же время совершить два колебания источником звука, то звук получится высокий. Поэтому можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который, например, женщина, которая поет сопрано. У нее чаще колеблются голосовые связки, поэтому вызывают чаще очаги сжатия и разряжения в распространении волны. Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр. Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или чем отличается это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды. Громкость звука чтобы была одинакова. Это так в оркестре, если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается, потому что звук, если бы мы его нарисовали, который извлекают из одного инструмента из другого, мы бы нарисовали с помощью диаграмм, то ничем бы не отличался. Но вы легко отличаете эти инструменты по звуку. Еще один пример, почему тембр важен. Два певца, которые заканчивают один и тот же музыкальный вуз, консерваторию, у одинаковых педагогов, учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой, пытается сделать что-то лучше. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т.е. у них отличаются голоса по тембру. Если тембр голоса таков, что он вызывает у всех остальных людей какие-то сильные эмоции (например, самая простая эмоция – это мурашки по коже бегают), если даже такое физическое изменение среды при передаче от певца к вам в уши этого колебания вызывает у вас изменение кожного покрова, вы можете смело считать, что этот человек – гений. Спасибо за внимание.