Классы
Предметы

Перемещение при прямолинейном равноускоренном движении

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Перемещение при прямолинейном равноускоренном движении

Данный видеоурок поможет пользователям получить представление о теме «Перемещение при прямолинейном равноускоренном движении». В ходе этого занятия учащиеся смогут расширить свои знания о прямолинейном равноускоренном движении. Учитель расскажет, как правильно определять перемещение, координаты и скорость при таком движении.

 

Введение

На предыдущих уроках мы обсуждали, как определить пройденный путь при равномерном прямолинейном движении. Настало время узнать, как определить координату тела, пройденный путь и перемещение при прямолинейном равноускоренном движении. Это можно сделать, если рассмотреть прямолинейное равноускоренное движение как набор большого количества очень малых равномерных перемещений тела.

Опыт Галилея

Первым решил задачу местоположения тела в определённый момент времени при ускоренном движении итальянский учёный Галилео Галилей. Свои опыты он проводил с наклонной плоскостью. По желобу он запускал шар, мушкетную пулю, а затем определял ускорение этого тела. Как же он это делал? Он знал длину наклонной плоскости, а время определял по биению своего сердца или по пульсу.

Определение перемещения по графику скорости

Рассмотрим график зависимости скорости равноускоренного прямолинейного движения от времени. Эта зависимость вам известна, она представляет собой прямую линию: v = v0 + at

перемещение

 

 

 

 

 

 

 
Рис.1. Определение перемещения при равноускоренном прямолинейном движении 

График скорости разбиваем на маленькие прямоугольные участки. Каждый участок будет соответствовать определённой постоянной скорости. Надо определить пройденный путь за первый промежуток времени. Запишем формулу: .

Теперь посчитаем суммарную площадь всех имеющихся у нас фигур. А сумма площадей при равномерном движении – это полный пройденный путь.

Обратите внимание, от точки к точке скорость будет изменяться, тем самым мы получим путь, пройденный телом именно при прямолинейном равноускоренном движении.

Заметим, что при прямолинейном равноускоренном движении тела, когда скорость и ускорение направлены в одну сторону, модуль перемещения равен пройденному пути, поэтому, когда мы определяем модуль перемещения – определяем пройденный путь. В данном случае можем говорить, что модуль перемещения будет равен площади фигуры, ограниченной графиком скорости и времени.

Воспользуемся математическими формулами для вычисления площади указанной фигуры.

 - площадь фигуры, (численно равная пройденному пути), равна полусумме оснований, умноженной на высоту. Обратите внимание, что на рисунке одним из оснований является начальная скорость. А вторым основанием трапеции будет конечная скорость, обозначенная буквой , умноженная на . Это означает, что высота трапеции , это промежуток времени, за которое произошло движение.

Конечную скорость, рассмотренную на предыдущем уроке, мы можем записать как сумму начальной скорости и вклада, обусловленного наличием у тела постоянного ускорения. Получается выражение:

Если открыть скобки, то  становится удвоенным. Мы можем записать следующее выражение:

Если по отдельности записать каждое из этих выражений, итогом будет следующее:

Это уравнение впервые было получено благодаря экспериментам Галилео Галилея. Поэтому можно считать, что именно этот ученый впервые дал возможность определить местоположение тела в любой момент. Это и есть решение главной задачи механики.

Определение координаты тела

Теперь давайте вспомним, что пройденный путь, равный в нашем случае модулю перемещения, выражается разностью:

Если в уравнение Галилея подставить полученное нами выражение для S, то запишем закон, по которому движется тело при прямолинейном равноускоренном движении:

Следует помнить, что скорость, ее проекция и ускорение могут быть отрицательными.

Следующим этапом рассмотрения движения станет исследование движения по криволинейной траектории.

 

Список дополнительной литературы

1.      Гиндикин С.Г. Рассказы о физиках и математиках. «Библиотечка “Квант”». Вып. 14. М.: Наука, 1982

2.      Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: Просвещение

3.      Лебедев В.И. Исторические опыты по физике. М.: КомКнига, 2007

4.      Слободянюк А.И. Физика 10. Часть 1. Механика. Электричество

5.      Физика. Механика. 10 класс. Под ред. Мякишева Г.Я. М.: Дрофа

6.      Филатов Е.Н. Физика 9. Часть 1. Кинематика. ВШМФ: Авангард