Классы
Предметы

Закон всемирного тяготения

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Закон всемирного тяготения

Этот видеоурок будет полезен всем тем, кто хочет самостоятельно пройти тему «Законы всемирного тяготения», которая входит в школьный курс физики за 9 класс. Учитель расскажет об открытии Исаака Ньютона, основанном на данных, полученных путем измерения движения планет. Учащиеся узнают о законах всемирного тяготения и вопросах, связанных с ними.

Тема: Законы взаимодействия и движения тел

Урок 19. Законы всемирного тяготения

Ерюткин Евгений Сергеевич

 

Темой урока является закон всемирного тяготения. Открыл этот закон английский ученый Исаак Ньютон в 1667 году. Свое открытие И. Ньютон обосновал на астрономических наблюдениях. Эти астрономические наблюдения были сделаны датским астрономом Тихо Браге. Тихо Браге измерил положение всех на тот момент известных планет и записал их координаты, но вывести окончательно, создать закон движения планет относительно Солнца Тихо Браге не удалось. Это сделал его ученик Иоганн Кеплер. Иоганн Кеплер воспользовался не только измерениями Тихо Браге, но и к тому времени уже достаточно обоснованной, используемой везде и всюду гелиоцентрической системой мира Коперника. Той системой, в которой считается, что в центре нашей системы находится Солнце и вокруг него обращаются планеты.

Рис. 1. Гелиоцентрическая система мира (система Коперника)

Одновременно с выводом закона всемирного тяготения появилось несколько вопросов, например, почему те или иные тела притягиваются друг к другу и каким свойствам должны отвечать эти тела. Почему они создают вокруг себя нечто, что заставляет другие тела двигаться относительно них с тем условием, которое мы рассматриваем. Отвечать на эти вопросы пришлось Ньютону, и он быстро нашел на них ответы. В первую очередь Ньютон предположил, что все тела обладают свойством притяжения, т.е. те тела, которые обладают массами, притягиваются друг к другу. Это явление стали называть всемирным тяготением. А тела, которые притягивают друг к другу другие, создают силу. Эту силу, с которой тела притягиваются, стали называть гравитационной (от слова gravitas – «тяжесть»). Ньютону удалось получить формулу для вычисления силы взаимодействия тел, обладающих массами. Обычно именно эту формулу и называют законом всемирного тяготения. Сам закон всемирного тяготения обычно звучит так: два тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Давайте рассмотрим величины, которые входят в этот закон. Итак, сам закон всемирного тяготения выглядит следующим образом:

закон всемирного тяготения

F – [H], m – [кг], R – [м]

Здесь есть еще одна величина – G, гравитационная постоянная. Ее физический смысл заключается в том, что она показывает, с какой силой взаимодействуют два тела массой в 1 кг, каждый в 1 кг, расположенные на расстоянии 1 м. Обращаю ваше внимание, что эта величина очень маленькая, она всего лишь по порядку величины составляет 10-11.

гравитационная постоянная

Такое ее значение говорит о том, в каком соотношении находятся, с какой силой взаимодействуют тела, находящиеся рядом, и даже если они будут достаточно близко располагаться (например, два стоящих человека), они абсолютно не почувствуют этого взаимодействия, поскольку порядок силы 10-11 не даст значительного ощущения. Действие гравитационной силы начинает сказываться только тогда, когда масса тел велика.

Когда Ньютон открыл закон всемирного тяготения, значения гравитационной постоянной он еще не знал. Ее точное измерение этой величины только произошло в конце XVIII века, в 1788 году.

Генри Кавендиш

 

 

 

 

 

 

 

Рис. 2. Генри Кавендиш

Как же впервые была определена эта величина? Это сделал в конце XVIII века английский ученый Генри Кавендиш. Экспериментальным путем при помощи т.н. крутильных весов он достаточно точно определил эту величину – .

Теперь обсудим границы применимости закона всемирного тяготения. В той форме, в которой мы используем закон всемирного тяготения, он справедлив не всегда, а только в некоторых случаях.

Итак, расстояние между телами, как его определять? Тела разные, и расстояния между ними тоже могут быть разными, т.е. относительно чего мы должны определять эти расстояния. Закон всемирного тяготения в данном случае будет справедлив, когда тела, во-первых, точечные.

Что значит точечные тела? Это означает, что расстояние между телами такое большое, что размерами самих тел мы можем пренебречь. Это первое важное условие.

Второй случай ограничения. Закон всемирного тяготения применим, когда тела обладают сферической формой. В этом случае, даже если расстояния между телами все-таки не так велики, закон всемирного тяготения все равно применим, если тела обладают сферической формой. Тогда расстояния определяются как расстояния между центрами рассматриваемых тел. И последнее, третье условие: если одно тело будет шар или сфера, а другое тело – материальная точка. Это как раз случай, когда вокруг Земли по своим орбитам движутся спутники.

Границы применимости  закона всемирного тяготения

Рис. 3. Границы применимости закона всемирного тяготения

На следующих уроках мы рассмотрим частные случаи применения закона всемирного тяготения: ускорение свободного падения на небесных телах и движение искусственных спутников.

 

Список дополнительной литературы

Белонучкин В.Е. Кеплер, Ньютон и все-все-все... 1990, М., Библиотечка Квант Элементарный учебник физики.   Под ред. Г.С. Ландсберга, Т. 1. Механика. Теплота. Молекулярная физика, М., 1974 Городецкий Е.Е. Закон всемирного тяготения //Квант. — 1987. — № 11. — С. 36-38. Смородинский Я. Закон всемирного тяготения //Квант. — 1990. — № 12. — С. 8-13,51. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.