Классы
Предметы

Умножение и деление алгебраических дробей

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Умножение и деление алгебраических дробей

На данном уроке будут рассмотрены правила умножения и деления алгебраических дробей, а также примеры на применение данных правил. Умножение и деление алгебраических дробей не отличается от умножения и деления обыкновенных дробей. Вместе с тем, наличие переменных приводит к несколько более сложным способам упрощения полученных выражений. Несмотря на то, что умножение и деление дробей выполняется проще, чем их сложение и вычитание, к изучению данной темы необходимо подойти крайне ответственно, поскольку в ней существует много «подводных камней», на которые обычно не обращают внимания. В рамках урока мы не только изучим правила умножения и деления дробей, но и разберём нюансы, которые могут возникнуть при их применении. 

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Умножение и деление алгебраических дробей

1. Правила умножения и деления обыкновенных и алгебраических дробей

Правила умножения и деления алгебраических дробей абсолютно аналогичны правилам умножения и деления обыкновенных дробей. Напомним их:

То есть, для того, чтобы умножить дроби, необходимо умножить их числители (это будет числитель произведения), и умножить их знаменатели (это будет знаменатель произведения).

Деление на дробь – это умножение на перевёрнутую дробь, то есть, для того, чтобы разделить две дроби, необходимо первую из них (делимое) умножить на перевёрнутую вторую (делитель).

2. Частные случаи применения правил умножения и деления дробей

Несмотря на простоту данных правил, многие при решении примеров по данной теме допускают ошибки в ряде частных случаев. Рассмотрим подробнее эти частные случаи:

Во всех этих правилах мы пользовались следующим фактом: .

3. Примеры умножения и деления обыкновенных дробей

Решим несколько примеров на умножение и деление обыкновенных дробей, чтобы вспомнить, как пользоваться указанными правилами.

Пример 1

Примечание: при сокращении дробей мы пользовались разложением числа на простые множители. Напомним, что простыми числами называются такие натуральные числа, которые делятся только на  и на само себя. Остальные числа называются составными. Число  не относится ни к простым, ни к составным. Примеры простых чисел: .

Пример 2

Рассмотрим теперь один из частных случаев с обыкновенными дробями.

Пример 3

Как видим, умножение и деление обыкновенных дробей, в случае правильного применения правил, не является сложным.

4. Примеры умножения и деления алгебраических дробей (простые случаи)

Рассмотрим умножение и деление алгебраических дробей.

Пример 4

Пример 5

Отметим, что сокращать дроби после умножения можно и даже нужно по тем же правилам, которые мы до этого рассматривали на уроках, посвящённых сокращению алгебраических дробей. Рассмотрим несколько простых примеров на частные случаи.

Пример 6

Пример 7

Рассмотрим теперь несколько более сложных примеров на умножение и деление дробей.

Пример 8

Пример 9

Пример 10

Пример 11

Пример 12

Пример 13

5. Примеры умножения и деления алгебраических дробей (сложные случаи)

До этого мы рассматривали дроби, в которых и числитель, и знаменатель являлись одночленами. Однако в ряде случаев необходимо перемножить или поделить дроби, числители и знаменатели которых являются многочленами. В этом случае правила остаются такими же, а для сокращения необходимо использовать формулы сокращённого умножения и вынесение за скобки.

Пример 14

Пример 15

Пример 16

Пример 17

Пример 18

На данном уроке мы рассмотрели правила умножения и деления алгебраических дробей, а также применение этих правил для конкретных примеров.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Портал для всей семьи (Источник).

2. Фестиваль педагогических идей «Открытый урок» (Источник).

3. Вся элементарная математика (Источник).

 

Домашнее задание

1. №№73-77, 80. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Выполнить умножение: а), б)

3. Выполнить деление: а) , б)

4. Упростить выражение: