Классы
Предметы

Простые механизмы. Рычаг (Побединский Д.М.)

Этот видеоурок доступен по абонементу
Подробнее об абонементе, платных и бесплатных уроках

У вас уже есть абонемент? Войти

Оплатить абонементот 75 руб. в месяц
У вас уже есть абонемент? Войти
Простые механизмы. Рычаг (Побединский Д.М.)

На данном уроке, тема которого: «Простые механизмы» мы поговорим о механизмах, которые помогают нам в работе. На стройках, на производстве, на отдыхе – везде мы нуждаемся в помощи. Такими помощниками выступают рычаги. Сегодня мы о них и поговорим, а также решим задачу и разберем несколько самых простых примеров из жизни.

Введение

На данном уроке речь пойдет о простых механизмах.

Простые механизмы – это устройства, с помощью которых работа совершается только за счет механической энергии. Нас окружают устройства, работающие за счет электроэнергии (см. рис. 1), за счет энергии сгорания топлива, но не всегда так было.

Чайник, работающий за счет электроэнергии

Рис. 1. Чайник, работающий за счет электроэнергии

Раньше всю работу можно было выполнить фактически руками, или с помощью животных, за счет ветра или течения воды (мельницы), то есть за счет механической энергии (см. рис. 2).

Давние простые механизмыДавние простые механизмыДавние простые механизмы

Рис. 2. Давние простые механизмы 

И помогают в этом, облегчают выполнение работы, простые механизмы.

Наши силы ограничены, и это проблема. Мы, например, не можем за один раз поднять и перенести с одного места на другое тонну кирпичей. Зато мы можем потратить больше времени, пройти большее расстояние туда-сюда и перенести кирпичи по четыре за один подход, или сколько сможем унести. Как быть с шурупом, который нужно вкрутить в дерево? Вкрутить его голыми руками мы не можем. Вкрутить его по кусочку, как гору кирпичей по кирпичику, тоже нельзя. Нужно использовать механизм, отвертку. С ней нам приходится прокрутить шуруп на несколько оборотов, чтобы он вошёл в дерево хотя бы на сантиметр. Но зато это несравненно легче, чем руками.

Простой механизм - лопата

Рассмотрим такой простой механизм, как, например, лопата. Конечно, она облегчает выполнение работы, с ней намного легче копать землю, чем руками. Мы воткнули лопату в землю. Чтобы поднять ком земли, нужно надавить на черенок. Где вы будете давить, чтобы было легче? Опыт подсказывает, что надо надавить, то есть приложить силу, поближе к концу черенка (см. рис. 3).

Выбор точки приложения силы

Рис. 3. Выбор точки приложения силы 

Попробуйте приложить силу ближе к полотну лопаты, поднять ком земли станет намного тяжелее. Прикладывая прежнюю силу, вы уже ничего не поднимете. Именно поэтому лопаты с коротким черенком, например саперные, делаются с маленьким полотном: много земли с коротким черенком все равно не поднимешь.

Лопата представляет собой рычаг. Рычаг – это твердое тело, имеющее неподвижную ось вращения (чаще всего это точка опоры или подвеса). На него действуют силы, которые стремятся повернуть его вокруг оси вращения. У лопаты ось вращения – это точка опоры на верхнем краю ямки (см. рис. 4).

Ось вращения лопаты

Рис. 4. Ось вращения лопаты 

На полотно лопаты с некоторой силой действует комок земли, который мы поднимаем, а на черенок, с меньшей силой, – наши руки (см. рис. 5).

Действие сил

Рис. 5. Действие сил 

Качели-балансир

Рассмотрим другой пример: все катались на качелях-балансире (см. рис. 6).

Качели-балансир

Рис. 6. Качели-балансир

Это тоже рычаг: есть неподвижная ось вращения, вокруг которой качели вращаются под действием сил тяжести детей.

Чтобы перевесить своего друга, сидящего на противоположном сидении, поднять его, вы сядете на самый край качели. Если сядете ближе к опоре качели, можете не перевесить. Тогда нужно на ваше место посадить кого-то взрослого и тяжелого (см. рис. 7).

Приложенная сила должна быть больше, чем на краю

Рис. 7. Приложенная сила должна быть больше, чем на краю 

В такой точке приложения силы нужна большая сила, чем когда сила прикладывалась к краю качели (см. рис. 8).

Приложение сил

Рис. 8. Приложение сил

Рычаг

Как вы уже заметили, чем дальше от точки опоры мы приложим силу, тем меньшая нужна сила для совершения одной и той же работы. Причем сила нужна во столько же раз меньшая, во сколько раз больше плечо рычага. Плечо рычага – это расстояние от точки опоры или подвеса рычага до точки приложения силы (см. рис. 9).

Плечо рычага и сила

Рис. 9. Плечо рычага и сила

Силы будем прикладывать перпендикулярно рычагу.

Направление силы, действующей на рычаг

В каком направлении вы будете действовать на лопату, чтобы поднять землю? Вы приложите силу к лопате так, чтобы она оборачивалась вокруг точки опоры, то есть перпендикулярно черенку (см. рис. 10).

Направление силы

Рис. 10. Направление силы 

Если вы будете действовать вдоль черенка, землю это не поднимет, вы разве что вытащите лопату из земли или воткнете ее глубже. Если вы будете давить на черенок под углом, силу можно представить как сумму двух сил: вы давите перпендикулярно черенку и одновременно толкаете или тащите вдоль черенка (см. рис. 11).

Действие силы вдоль черенка

Рис. 11. Действие силы вдоль черенка

Вращать лопату будет только перпендикулярная составляющая.

Итак, у нас есть рычаг и две силы, которые на него действуют: вес груза и сила, которую мы прикладываем, чтобы этот груз поднять. Мы выявили, что чем больше плечо рычага, тем меньше нужна сила, чтобы уравновесить рычаг. Причем во сколько раз больше плечо рычага, во столько раз меньше сила. Математически это можно записать в виде пропорции:

При этом неважно, приложены силы по разные стороны от точки опоры или по одну сторону. В первом случае рычаг назвали рычагом первого рода (см. рис. 12), а во втором – рычагом второго рода (см. рис. 13).

Рычаг первого рода

Рис. 12. Рычаг первого рода 

Рычаг второго рода

Рис. 13. Рычаг второго рода 

Работа с лопатой

Мы рассмотрели, как лопата позволяет нам легче копать землю. Она опирается на край образовавшейся ямки в земле, это будет осью ее вращения. Вес земли приложен к короткому плечу рычага, мы руками прикладываем силу к длинному плечу рычага (см. рис. 14).

Приложение сил к лопате

Рис. 14. Приложение сил к лопате 

Причем во сколько раз отличаются плечи рычага, во столько же раз отличаются силы, приложенные к этим плечам.

Итак, мы приподняли ком земли, но дальше нужно взять лопату двумя руками, поднять ее полностью и перенести землю. Где мы возьмемся за черенок лопаты второй рукой? Всё просто, когда мы уже знаем принцип работы рычага. Вторая рука станет новой опорой рычага. Она должна быть расположена так, чтобы снова дать выигрыш в силе, она должна снова разделить рычаг на короткое и длинное плечи. Поэтому мы возьмем лопату как можно ближе к полотну лопаты. Попробуйте поднять лопату, взявшись обеими руками за край – у вас может ничего не получиться даже с пустой лопатой.

Принцип, по которому работает рычаг, используется очень часто. Например, плоскогубцы – рычаг первого рода (см. рис. 15). Мы действуем на ручки плоскогубцев с силой , а плоскогубцы действуют на кусок проволоки, трубку или гайку с силой , по модулю намного большей, чем . Во столько раз большей, во сколько раз  больше:

Пример рычага первого рода

Рис. 15. Пример рычага первого рода 

Еще один рычаг – консервный нож, только теперь точки приложения находятся по одну сторону от точки опоры О. И снова мы прикладываем к ручке силу , а лезвие открывалки действует на жесть консервной банки с намного большей по модулю силой  (см. рис. 16).

Пример рычага второго рода

Рис. 16. Пример рычага второго рода

Во сколько раз  больше, чем ? Во столько же, во сколько раз больше, чем :

Выигрыш в силе можно получить огромный, мы ограничены разве что длиной рычага и его прочностью.

Задача

Рассчитаем, какой длины должен быть рычаг, чтобы с его помощью хрупкая девушка массой 50 кг смогла приподнять автомобиль массой 1500 кг, надавив на рычаг всем своим весом. Точку опоры рычага разместим так, чтобы короткое плечо рычага было равно 1 м (см. рис. 17).

Рисунок к задаче

Рис. 17. Рисунок к задаче 

В задаче описан рычаг (см. рис. 18).

Условие задачи 1

Рис. 18. Условие задачи 1 

Мы знаем, во сколько раз выигрыш в силе дает рычаг:

Силы прикладываются по разные стороны от опоры рычага, поэтому два плеча рычага в сумме составят его длину:

Мы описали математически процесс, заданный в условии. В нашем случае сила , действующая на плечо , – это вес автомобиля , а сила , действующая на плечо , – вес девушки .

Теперь осталось только решить уравнения и найти ответ.

Из первого уравнения найдем плечо .Бόльшая сила приложена к меньшему плечу рычага, значит – это и есть короткое плечо, равное 1 м.

Длина рычага равна:

Ответ: 31 м.

 

Как лопата копает сама?

Рассматривая примеры, мы не учитывали силу тяжести, действующую на рычаг.

Представьте, что мы воткнули лопату неглубоко в землю. Если лопата достаточно тяжелая, небольшую массу земли она сможет поднять без нашей помощи, нам даже не нужно будет прикладывать к черенку никакую силу. Лопата повернется вокруг оси вращения под действием сил тяжести, действующей на черенок лопаты (см. рис. 19).

Поворачивание лопаты вокруг своей оси

Рис. 19. Поворачивание лопаты вокруг своей оси

Однако чаще всего вес рычага пренебрежимо мал по сравнению с силами, которые на него действуют, поэтому в нашей модели мы считаем рычаг невесомым.

Сила и перемещение

На примере девушки и автомобиля мы увидели, что с помощью рычага можно выполнить такую работу, которую без рычага мы бы никогда не выполнили. С помощью рычага можно было бы сдвинуть даже Землю, о чем говорил Архимед (см. рис. 20).

Предположение Архимеда

Рис. 20. Предположение Архимеда 

Проблема в том, что рычаг не на что опереть, нет подходящей точки опоры. И вы, конечно, представляете, какой невообразимой длины должен быть такой рычаг, ведь масса Земли равна 5974 миллиарда миллиардов тонн.

Слишком всё хорошо получается: мы можем почти неограниченно уменьшать силу, необходимую для выполнения работы. Должен быть подвох, иначе с рычагом наши возможности были бы безграничны. В чем подвох?

Используя рычаг, мы прикладываем меньшую силу, но при этом совершаем большее перемещение (см. рис. 21).

Перемещение увеличивается

Рис. 21. Перемещение увеличивается

Мы передвинули черенок лопаты на вытянутую руку, но подняли землю всего на несколько сантиметров. Архимед, если бы всё-таки нашел точку опоры, за всю свою жизнь не успел бы повернуть свой рычаг так, чтобы сдвинуть Землю. Чем меньшую силу мы прикладываем, тем большее перемещение совершаем. А произведение силы на перемещение, то есть работа, остается постоянным. То есть рычаг дает выигрыш в силе, но проигрыш в перемещении, или наоборот.

 

Рычаги, которые используются «наоборот»

Не всегда рычаги используются для того, чтобы совершать работу, прикладывая меньшую силу. Иногда важно выиграть в перемещении, даже если при этом приходится прикладывать бόльшую силу. Так делает рыбак, которому нужно вытащить рыбу, переместить ее на большое расстояние. При этом он использует удочку как рычаг, прикладывая силу  к ее короткому плечу (см. рис. 22).

Использование удочки

Рис. 22. Использование удочки 

Рычагом является и наша рука. Мышцы руки сокращаются, и рука сгибается в локте. При этом она может поднять какой-нибудь груз, совершить работу. При этом на кости предплечья действуют с некоторыми силами мышцы и груз (см. рис. 23).

Наша рука – рычаг

Рис. 23. Наша рука – рычаг

Ось вращения предплечья – локтевой сустав. Из таких рычагов состоит весь наш опорно-двигательный аппарат. И сам термин «плечо рычага» назван так по аналогии с плечом одного из рычагов в нашем теле – руки.

Мышцы так устроены, что они при сокращении не могут укорачиваться на те полметра, на которые нам нужно поднять, например, чашку с чаем. Нужно выиграть в перемещении, поэтому мышцы крепятся ближе к суставу, к меньшему плечу рычага. При этом нужно приложить бόльшую силу, но для мышц это не проблема.

Наклонная плоскость

Рычаг – не единственный простой механизм, который облегчает нам выполнение работы.

Каким простым механизмом вы пользуетесь, когда поднимаетесь на первый этаж? Можно допрыгнуть до окна, если получится, и просто вскарабкаться в комнату. Мы привыкли совершать ту же работу по перемещению себя домой намного безопаснее и легче – поднимаясь по лестнице. Так мы проделываем больший путь, но прикладываем к себе меньшую силу. Если мы сделаем длинную пологую лестницу, подниматься станет еще легче, будем идти почти как по ровной поверхности, но путь проделать придется бόльший (см. рис. 24).

Пологая лестница

Рис. 24. Пологая лестница 

Наклонная плоскость является простым механизмом. Всегда легче не поднимать что-то тяжелое, а втащить его под уклон.

Рассмотрим, как топор раскалывает древесину. Его лезвие заостренное и расширяется ближе к основанию, и чем глубже клин топора вгоняется в древесину, тем шире она раздается и в итоге раскалывается (см. рис. 25).

Рубка дров

Рис. 25. Рубка дров 

Принцип действия клина тот же, что и для наклонной плоскости. Чтобы раздвинуть части древесины на сантиметр, нужно было бы приложить огромную силу. К клину достаточно приложить меньшую силу, правда, придется совершить большее перемещение вглубь древесины.

По тому же принципу наклонной плоскости работают и винты. Присмотримся к шурупу: бороздка вдоль шурупа представляет собой наклонную плоскость, только обернутую вокруг стержня шурупа (см. рис. 26).

Наклонная плоскость шурупа

Рис. 26. Наклонная плоскость шурупа 

И мы также без особых усилий вгоняем шуруп на нужную нам глубину. При этом, как обычно, проигрываем в перемещении: нужно сделать много оборотов шурупа, чтобы вогнать его на пару сантиметров. В любом случае это лучше, чем раздвинуть древесину и вставить туда шуруп.

Когда мы вкручиваем шуруп отверткой, мы еще больше облегчаем себе работу: отвертка представляет собой рычаг. Смотрите: сила, с которой на жало отвертки действует шуруп, приложена к меньшему плечу рычага, а мы своей рукой действуем на большее плечо (см. рис. 27).

Принцип работы отвертки

Рис. 27. Принцип работы отвертки 

Рукоятка отвертки толще, чем жало. Если бы у отвертки были ручки, как у штопора, выигрыш в силе был бы еще больше.

Мы так часто пользуемся простыми механизмами, что даже не замечаем этого. Возьмем обычную дверь. Сможете назвать три случая использования простого механизма в работе двери?

Обратите внимание, где находится ручка. Она всегда находится у края двери, подальше от петель (см. рис. 28).

Местоположение ручки на двери

Рис. 28. Местоположение ручки на двери 

Попробуйте открыть или закрыть дверь, надавив на нее поближе к петлям, будет трудно. Дверь представляет собой рычаг, и чтобы для открытия двери было достаточно как можно меньшей силы, плечо этой силы должно быть как можно больше.

Присмотримся к самой ручке. Если бы она представляла собой голую ось, открыть дверь было бы трудно. Ручка увеличивает плечо, к которому приложена сила, и мы, прикладывая меньшую силу, открываем дверь (см. рис. 29).

 Ручка двери

Рис. 29. Ручка двери 

Присмотримся к форме ключа. Думаю, вы сможете ответить, зачем их делают с широкими головками. А почему петли, на которых дверь держится, расположены не рядом друг с другом, а приблизительно на четверть высоты от краев двери? Вспомните, как мы брали лопату, когда поднимали ее – здесь тот же принцип. А еще можно обратить внимание на срезанный под углом язычок замка, на шурупы, которыми дверь прикручена к петлям (см. рис. 30).

Петли двери

Рис. 30. Петли двери

Итоги

Как видите, простые механизмы лежат в основе всевозможных устройств – от двери и топора до подъемного крана. Мы используем их неосознанно, когда выбираем, например, где взяться за ветку, чтобы наклонить ее. Сама природа при создании человека использовала простые механизмы, когда создавала нашу опорно-двигательную систему или зубы с их клиновидной формой. И если вы будете внимательны, вы заметите еще множество примеров того, как простые механизмы облегчают выполнение механической работы, и сможете их использовать еще более эффективно.

На этом наш урок окончен, спасибо за внимание!

 

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В. Физика: Учебник 7 класс. – М.: 2006. – 192 с.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Virtuallab.by (Источник).
  2. School.xvatit.com (Источник).
  3. Лена24.рф (Источник).
  4. Fizika.ru (Источник).

 

Домашнее задание

  1. Что такое рычаг? Дайте определение.
  2. Какие примеры рычагов вы знаете?
  3. Длина меньшего плеча рычага 5 см, большего 30 см. На меньшее плечо действует сила 12 Н. Какую силу надо приложить к большему плечу, чтобы уравновесить рычаг?